福田のおもしろ数学458〜関数方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学458〜関数方程式

問題文全文(内容文):

整数から整数への関数$f(n)$が

$f(n)=f(n^2+n+1)$

を満たす偶関数であるとき、

$f(n)$を求めて下さい。
   
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

整数から整数への関数$f(n)$が

$f(n)=f(n^2+n+1)$

を満たす偶関数であるとき、

$f(n)$を求めて下さい。
   
投稿日:2025.04.04

<関連動画>

福田の1.5倍速演習〜合格する重要問題052〜東京慈恵会医科大学2019年度医学部第2問〜2曲線の相接と囲まれた部分の面積とその極限

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a,b$は定数で$a \gt 1$とする。2つの曲線$C_1:y=\displaystyle\frac{3e^x-1}{e^x+1}$,$C_2:y=\displaystyle\frac{e^x}{a^2}+b$が共有点Pをもち、点Pにおいて共通の接線をもつとする。このとき、次の問いに答えよ。
(1)$C_1$の凹凸および変曲点を調べ、$C_1$の概形を描け。
(2)点Pの座標と$b$を$a$で表せ。
(3)$C_1$,$C_2$と$y$軸で囲まれた部分の面積$S(a)$を$a$で表せ。また、極限値$\displaystyle\lim_{a \to \infty}S(a)$を求めよ。
ただし、必要ならば$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}= 0$であることを用いてよい。

2019東京慈恵会医科大学医学部過去問
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 関数 y=log(x-1) のグラフ上の点P(-2,0)における接線と法線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数 $y=\log(x-1)$ のグラフ上の点P($-2,0$)における接線と法線の方程式を求めよう。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。

2018神戸大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(6)
$0 \lt a \lt b \lt \frac{\pi}{2}$のとき、
$\frac{a}{b} \lt \frac{\sin a}{\sin b}$が成り立つことを証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系064〜微分(9)定義に従った微分(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る 
PAGE TOP