福田のおもしろ数学458〜関数方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学458〜関数方程式

問題文全文(内容文):

整数から整数への関数$f(n)$が

$f(n)=f(n^2+n+1)$

を満たす偶関数であるとき、

$f(n)$を求めて下さい。
   
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

整数から整数への関数$f(n)$が

$f(n)=f(n^2+n+1)$

を満たす偶関数であるとき、

$f(n)$を求めて下さい。
   
投稿日:2025.04.04

<関連動画>

福田のわかった数学〜高校3年生理系079〜グラフを描こう(1)分数関数のグラフ

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(1)

$y=\frac{x^2}{x-1}$のグラフを描け。

ただし凹凸は調べなくてよい。
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略

次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
この動画を見る 

福田の数学〜明治大学2024理工学部第2問〜三角関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\sin{3x}-\sqrt3\cos{2x}$とし、座標平面上の曲線$y=f(x)$を$C$とする。
(1) 点$(0,f(0))$における曲線$C$の接線の方程式は$y=\boxed{あ}$である。
(2) $t$についての整式$g(t)$で、$f'(x)=g(\sin x)\cos x$が成り立つものを求めると、$g(t)=\boxed{い}$である。
(3) $x>0$の範囲で、$f'(x)=0$となる$x$の値を小さい順に$x_1,x_2,x_3,\cdots$とすると、$x_1=\boxed{う},x_2=\boxed{え},x_3=\boxed{お}$である。
(4) $0\leqq x\leqq \pi$の範囲での$f(x)$の最大値は$\boxed{か}$、最小値は$\boxed{き}$である。
(5) (4)で定めた$x_1$と$x_3$に対して、2点$(x_1,f(x_1)),(x_3,f(x_3))$を通る直線を$l$とする。このとき、$x_1\leqq x\leqq x_3$の範囲において直線$l$と曲線$C$で囲まれた部分の面積は$\boxed{く}$である。
この動画を見る 

東工大 秀才栗崎 微分積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=\displaystyle \frac{1}{x}(x \gt 0)$と$y=- \displaystyle \frac{1}{x}(x \lt 0)$の接線および$x$軸を囲まれる三角形の面積の最大

出典:1975年東京工業大学 過去問
この動画を見る 

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 
PAGE TOP