慶應大 簡単すぎたので1問付け加えてみた - 質問解決D.B.(データベース)

慶應大 簡単すぎたので1問付け加えてみた

問題文全文(内容文):
2023慶応義塾大学過去問題
$P(x)=\displaystyle\sum_{n=1}^{20}nx^n=20x^{20}+19x^{19}+$
$\cdots+2x^2+x$
を①$x-1$,②$x^2-1$で割った余り

おまけ
$x^3-1$で割った余り
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
$P(x)=\displaystyle\sum_{n=1}^{20}nx^n=20x^{20}+19x^{19}+$
$\cdots+2x^2+x$
を①$x-1$,②$x^2-1$で割った余り

おまけ
$x^3-1$で割った余り
投稿日:2023.07.06

<関連動画>

福田のおもしろ数学077〜3通りの解法を考えよう〜4変数の式の最大値

アイキャッチ画像
単元: #数Ⅱ#式と証明#平面上のベクトル#図形と方程式#三角関数#恒等式・等式・不等式の証明#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$a^2$+$b^2$=9, $c^2$+$d^2$=16 のとき$ab$+$cd$ の最大値を求めよ。
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(p-1)!+1$は$p$の倍数であることを示せ.
この動画を見る 

【ゼロからわかる】整式の割り算②(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の問いに答えよ。
(1)
$x^2-6x+3$で割ると、商が$2x-3,$余りが$3x$である整数$A$を求めよ。

(2)
$x^3+3x^2+2x+1$を$B$で割ると、商が$x+1,$余りが$x+2$になる。
整数$B$を求めよ。
この動画を見る 

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

福田のおもしろ数学580〜100より小さい正の整数を50個選んだとき互いに素な整数が存在する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$100$より小さい互いに異なる正の整数を

$50$個選んだとき、その中に

互いに素な$2$つの整数が必ず

存在することを証明して下さい。
    
この動画を見る 
PAGE TOP