【数Ⅲ】【微分とその応用】関数のグラフ4 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数のグラフ4 ※問題文は概要欄

問題文全文(内容文):
1.関数$y=-x^3+3x^2$のグラフはただ1つの変曲点をもち、
その点に関して対象であることを示せ。
2.関数$y=x^3+3ax^2+3bx+c$は$x=1$で極小となり、
点$(0,3)$はそのグラフの変曲点である。定数$a,b,c$の値を求めよ。
3.右の図は、関数$y=ax^3+bx^2+cx+d~~(0< x <5)$のグラフで、
$x=2$で極大、$x=4$で極小となり、点$(3,5)$は変曲点である。
定数$a,b,c,d$を求めずに、次のものを求めよ。
(1) $y' > 0$となる$x$の値の範囲
(2) $y'' > 0$となる$x$の値の範囲
(3) $y'$が最小となる$x$の値
チャプター:

0:00 オープニング
0:03 問題概要
0:26 1番解説
1:27 対称移動→中点を考える
3:30 2番解説
4:45 3番解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
1.関数$y=-x^3+3x^2$のグラフはただ1つの変曲点をもち、
その点に関して対象であることを示せ。
2.関数$y=x^3+3ax^2+3bx+c$は$x=1$で極小となり、
点$(0,3)$はそのグラフの変曲点である。定数$a,b,c$の値を求めよ。
3.右の図は、関数$y=ax^3+bx^2+cx+d~~(0< x <5)$のグラフで、
$x=2$で極大、$x=4$で極小となり、点$(3,5)$は変曲点である。
定数$a,b,c,d$を求めずに、次のものを求めよ。
(1) $y' > 0$となる$x$の値の範囲
(2) $y'' > 0$となる$x$の値の範囲
(3) $y'$が最小となる$x$の値
投稿日:2025.03.05

<関連動画>

【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての正の数xに対して、

不等式$\sqrt{x}>a\log x$が成り立つような定数aの値の範囲を求めよ。
この動画を見る 

【数Ⅲ-176】速度と道のり①(直線運動編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)

ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は

位置の変化$S=$ ①
道のり$l=$ ➁

Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
この動画を見る 

慶応義塾大 指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-6・4^x+5・2^x=k$が異なる3つの実数解をもつ$k$の範囲を求めよ

出典:慶應義塾大学 過去問
この動画を見る 

複素関数論① *10(1)-(3) 高専数学

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$Z \in A \not \subset $
次の方程式を解け.

(1)$Z^6=1$
(2)$Z^4=-1$
(3)$Z^3=8i$

「$Z・r(\cos\theta+i\sin\theta)$
$r\geqq 0,0\leqq \theta \lt 2\pi」$
この動画を見る 

【高校数学】数Ⅲ-114 平均値の定理②

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ

①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$

➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$

この動画を見る 
PAGE TOP