【数Ⅱ】等式の証明:解と係数の関係の利用(防衛大学校) - 質問解決D.B.(データベース)

【数Ⅱ】等式の証明:解と係数の関係の利用(防衛大学校)

問題文全文(内容文):
$a\neq b, b\neq c, c\neq a$のとき、$a, b, c$が$ \dfrac{a^3+2a}{a+1} = \dfrac{b^3+2b}{b+1} = \dfrac{c^3+2c}{c+1} = k$ を満たすならば、次の各等式が成り立つことを証明せよ。
(1)$a+b+c=0$。
(2)$k=abc$
チャプター:

0:00 オープニング
0:05 問題文
0:20 考え方:①対称式は和と差で立式、②条件から式をイメージ
1:10 解答(1)
1:25 解答(2)
1:40 別解:解と係数の関係の利用
2:28 名言

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a\neq b, b\neq c, c\neq a$のとき、$a, b, c$が$ \dfrac{a^3+2a}{a+1} = \dfrac{b^3+2b}{b+1} = \dfrac{c^3+2c}{c+1} = k$ を満たすならば、次の各等式が成り立つことを証明せよ。
(1)$a+b+c=0$。
(2)$k=abc$
投稿日:2021.09.13

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

信州大(医)整数問題の基本

アイキャッチ画像
単元: #整数の性質#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023信州大学過去問題
3つの自然数P,P+10,P+20がすべて素数となるようなPがただ1つ存在することを示せ
この動画を見る 

名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!#shorts #高校数学 #名古屋大学

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!
この動画を見る 

【高校数学】信州大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分88日目~47都道府県制覇への道~【㉛長野】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【信州大学 2023】
tを実数とし、座標空間内の2点$P(0,0,t^2-1), Q(t,1,e^t+e^{-t}-e-e^{-1})$を考える。tを$-1≦t≦1$の範囲で動かすとき、線分PQが通過してできる曲面および2平面$y=1,z=0$で囲まれてできる立体の体積を求めよ。
この動画を見る 

横浜市大 複素数 cos36°,cos108° 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^2-x-1=0$解け
(2)複素数Z$(\neq 0)$,$\quad x=Z+\frac{1}{Z}$として、このxを(1)の方程式に代入して、すべての解を求めよ。
(3)$cos\frac{\pi}{5}$と$cos\frac{3\pi}{5}$の値
この動画を見る 
PAGE TOP