慶應義塾大 3次方程式が有理数解をもつ条件 - 質問解決D.B.(データベース)

慶應義塾大 3次方程式が有理数解をもつ条件

問題文全文(内容文):
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.

慶應義塾大過去問
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^3-(a+1)x^2-4x+a=0$が整数でない有理数解をもつ自然数$a$の値を求めよ.

慶應義塾大過去問
投稿日:2020.09.08

<関連動画>

平方根の計算  2024慶應義塾

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{(1+\sqrt 2+\sqrt 3)^2}+\frac{1}{(1+\sqrt 2-\sqrt 3)^2}$
解いてみよ
慶応義塾大学2024
この動画を見る 

「二次関数の決定」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
この動画を見る 

例の問題

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは実数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=3\sqrt3 \\
ab+bc+ca=9
\end{array}
\right.
\end{eqnarray}$
$\dfrac{2a^2+3b^2}{5c}$の値を求めよ.
この動画を見る 

角の二等分線と面積比

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△ABD:△ACD=?
*図は動画内参照
この動画を見る 

すべて○けろ!!式の値

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b} = \frac{b}{c} = \frac{c}{d} = \frac{1}{4}$
$\frac{d}{a} =?$
この動画を見る 
PAGE TOP