【ゼロからわかる】二項定理を3項で利用する(高校数学Ⅱ) - 質問解決D.B.(データベース)

【ゼロからわかる】二項定理を3項で利用する(高校数学Ⅱ)

問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
$(x+2y-z)^6$  $[x^3y^2z]$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
$(x+2y-z)^6$  $[x^3y^2z]$
投稿日:2022.03.05

<関連動画>

【数Ⅱ】二項定理・多項定理の導出と使い方【ストーリーがわかれば暗記不要!】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
二項定理・多項定理の導出と使い方に関して解説していきます.
この動画を見る 

練習問題52 慶応大学(2021) 最大値

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \lt x,\ 0 \lt y:$実数
$0x^2+16y^2=144$をみたすとき$xy$の最大値を求めよ。

出典:2021年慶應義塾大学
この動画を見る 

福田のおもしろ数学464〜素数でないことを証明する

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b,c,d$が

$ab=cd$を満たすとする。

このとき、

$a+b+c+d$が

素数でないことを証明せよ。
    
この動画を見る 

慶應商 式の証明 高校数学 Mathematics Japanese university entrance exam Keio University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は正の整数
$\sqrt{ 3 }$は$\displaystyle \frac{a}{b}$と$\displaystyle \frac{a+3b}{a+b}$の間にあることを示せ

出典:慶應商学部 問題
この動画を見る 

福田のわかった数学〜高校3年生理系043〜極限(43)有名な極限の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP