【ゼロからわかる】二項定理を3項で利用する(高校数学Ⅱ) - 質問解決D.B.(データベース)

【ゼロからわかる】二項定理を3項で利用する(高校数学Ⅱ)

問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
$(x+2y-z)^6$  $[x^3y^2z]$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
$(x+2y-z)^6$  $[x^3y^2z]$
投稿日:2022.03.05

<関連動画>

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
この動画を見る 

【数Ⅱ】式と証明:分数式の基本2

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の分数式を約分せよ。$\dfrac{a^3-a^2b+ab^2}{a^3+b^3}$
この動画を見る 

【わかりやすく解説】相加相乗平均の関係を使う不等式の証明①(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
この動画を見る 

二項定理

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
二項定理
$(x+y)^n=?$
この動画を見る 
PAGE TOP