大阪大 整数問題 - 質問解決D.B.(データベース)

大阪大 整数問題

問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$を素数とする.$(p\gt 2q)$
$p^n-4(-q)^n$がすべての自然数$n$で$3$の倍数となる$(p,q)$のうち$pq$を最小のものを求めよ.

大阪大過去問
投稿日:2020.12.10

<関連動画>

数列・合同式 前橋工科大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$ $a_n=3a_{n-1}+3^n$

(1)
$a_n$

(2)
$\displaystyle \sum_{k=1}^n a_k$

(3)
$a_n+n-2$は4つの倍数を示せ

出典:2000年前橋工科大学 過去問
この動画を見る 

明治学院大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{10^{130}}{13}$の小数第一位を求めよ.

2021明治学院大過去問
この動画を見る 

【整数問題の超難問】素数の中のあの数字を使え!一橋大学で実際に出された入試問題【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ a-b-8$と$b-c-8$が素数となるような素数の組$(a,b,c)$をすべて求めよ。

一橋大過去問
この動画を見る 

2022年の整数問題!この問題好きです❤️ 早稲田大学高等学院2022年入試問題解説49問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022=x \sqrt y (x^y+y^y)$
を満たす自然数x,yは?

2022早稲田大学高等学院
この動画を見る 

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2015九州大学過去問題
(1)nが正の偶数のとき、$2^n-1$は3の倍数であることを示せ。
(2)Pを素数とし、kを0以上の整数とする。$2^{P-1}-1=P^k$を満たす
 P,Kの組をすべて求めよ。
この動画を見る 
PAGE TOP