戸山高校 2022 入試問題100題解説71問目!! - 質問解決D.B.(データベース)

戸山高校 2022 入試問題100題解説71問目!!

問題文全文(内容文):
$\stackrel{\huge\frown}{CD}$ = $\stackrel{\huge\frown}{DB}$
CF=?
*図は動画内参照
2022戸山高等学校
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{CD}$ = $\stackrel{\huge\frown}{DB}$
CF=?
*図は動画内参照
2022戸山高等学校
投稿日:2022.02.24

<関連動画>

息抜き 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
この動画を見る 

整数問題 初級

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数(x,y)の組をすべて求めよ.
$(xy-7)^2=x^2+y^2 $
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ $1個$のさいころを繰り返し投げ、出た目の数により以下の$(\textrm{a}),$$(\textrm{b})$に従い得点を定める。
$(\textrm{a})$最初から$10回$連続して$1の目$が出た場合には、$10回目$で投げ終えて、得点を$0点$とする。
$(\textrm{b})m$を$0 \leqq m \leqq 9$を満たす整数とする。最初から$m回$連続して$1の目$が出てかつ$m+1回目$に初めて$1以外$の目$n$が出た場合には、続けてさらに$n回$投げたところで投げ終えて、$1回目$から$m+n+1回目$までに出た目の合計を得点とする。ただし、最初から$1以外$の目が出た場合には$m=0$とする。
$(1)$得点が$49点$であるとする。このとき、$n=\boxed{\ \ ア\ \ }$となり、$m$の取り得る値の範囲は$\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }$であり、得点が$49点$となる確率は$\displaystyle\frac{\boxed{\ \ エオ\ \ }}{6^{16}}$である。また、得点が
$49点$で、さいころを投げる回数が$15回$以上である確率は$\displaystyle\frac{\boxed{\ \ カキ\ \ }}{6^{16}}$となる。さらに得点が$49点$である条件のもとで、さいころを投げる回数が$14回$以下である条件付き確率は$\displaystyle\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}$となる。
$(2)$さいころを投げる回数が$15回$以上である確率は$\displaystyle\frac{\boxed{\ \ シ\ \ }}{6^{10}}$となる。ゆえに、さいころを投げる回数が$14回$以下である条件のもとで、得点が$49点$となる条件付き確率は、$k=\boxed{\ \ ス\ \ }$とおいて$\displaystyle\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}$となる。
$(3)$得点が正の数で、かつ、さいころを投げる回数が$14回$以下である条件のもとで、得点が$49点$となる条件付き確率は$l=\boxed{\ \ ソ\ \ }$とおいて$\displaystyle \frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}$となる。

2021慶應義塾大学経済学部過去問
この動画を見る 

【整数問題】考えられる候補は何パターンだろうか【慶應義塾大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$6a^{3}+11a^{2}b^{2}c+3ab^{3}c$=6270を満たす(a,b,c)の組をすべて求めよ。
ただし、a,b,cはそれぞれ2以上の整数とする。

慶應義塾大過去問
この動画を見る 

大阪大 整数(素数)問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04大阪大学過去問題
p,q素数(p>2q)
$a_n=P^n-4(-q)^n$  n自然数
(1)$a_1$と$a_2$が1より大きい公約数mをもつならばm=3であることを示せ
(2)$a_n$が全て3の倍数であるようなp,qのうち積pqが最小となるものを求めよ。
この動画を見る 
PAGE TOP