福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
投稿日:2025.06.18

<関連動画>

微分方程式⑪-1【非線形2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$\dfrac{dy}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$\dfrac{d^2y}{dx^2}=\sqrt{1-\left(\dfrac{dt}{dx}\right)^2}$
この動画を見る 

【高校数学】数Ⅲ-105 高次導関数③

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y=\sin x$のとき,
$y^{(n)}=\sin\left(x+\dfrac{n\pi}{2}\right)(n=1,2,3・・・)$であることを証明せよ。
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用5 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のことが成り立つことを証明せよ。

$0≦x≦1$のとき

$1-x+x²e^x≦e^x≦1+x+\displaystyle \frac{1}{2}
x²e^x$
この動画を見る 

福田のおもしろ数学241〜e^πとπ^eの大小

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$e^π$と$π^e$の大小を比較してください。
この動画を見る 

【数Ⅲ-126】微分の不等式への応用②

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用➁)

$x\gt0$のとき、不等式$\sqrt{1+x}\gt1+\frac{1}{2}x-\frac{1}{8}x^2$を証明せよ
この動画を見る 
PAGE TOP