福田の1.5倍速演習〜合格する重要問題047〜慶應義塾大学2019年度総合政策学部第3問〜立方体の内部を面に接しながら動く球の通過できない領域 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題047〜慶應義塾大学2019年度総合政策学部第3問〜立方体の内部を面に接しながら動く球の通過できない領域

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき                    \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき                    \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}

2019慶應義塾大学総合政策学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき                    \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき                    \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}

2019慶應義塾大学総合政策学部過去問
投稿日:2023.01.01

<関連動画>

福田の数学〜慶應義塾大学2022年環境情報学部第4問〜ピラミッドを切って体積を求める

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)xyz空間において|x|+|y|+|z| \leqq 1を満たす立体の体積は\ \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ である。\\
(2)aを実数としたとき、xyz空間において\\
|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0\ \ \ \\
を満たす立体の体積V(a)は\\
\\
(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ のとき、V(a)=0,\\
\\
(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0\ のとき、V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},\\
\\
(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}\ のとき、V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},\\
\\
(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }}\ のとき、V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},\\
\\
(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a\ のとき、V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

早稲田大2019微分・3次関数と直線の交点

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2$上の$(a,a^2)$における接線が$y=x^3-ax$と3点で交わる$a$の範囲を求めよ.

2019早稲田大過去問
この動画を見る 

微分法と積分法 数Ⅱ定積分:1/6公式の使い方【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{α}^{ β } (x-α)(x-β)dx=-\dfrac{1}{6}(β-α)^3$を用いて、次の定積分を求めよ。

(1)$\displaystyle \int_{-1}^{ 2 } (x^2-x-2)dx$

(2)$\displaystyle \int_{1-\sqrt{2} }^{1+\sqrt{2}} (x^2-2x-1)dx$

(3)$\displaystyle \int_{3}^{ 4 } (14x-24-2x^2)dx$
この動画を見る 

福田のわかった数学〜高校2年生067〜三角関数(6)三角方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(6) 三角方程式\\
次の三角方程式の一般解と0 \leqq \theta \lt 2\piにおける解を求めよ。\\
\cos4\theta=\sin(\theta+\frac{\pi}{4})
\end{eqnarray}
この動画を見る 

【数学】中高一貫校用問題集数式・関数編:分数式を含む方程式の解法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を解け。
(1)$\displaystyle \frac{x}{x^2-7x+10} -\frac{10}{x^2-5x} =\frac{2}{x}$
(2)$\displaystyle \frac{x}{x^2+3x+2} =\frac{2}{x+2} -1$
この動画を見る 
PAGE TOP