座標平面 円と接線 中央大杉並 - 質問解決D.B.(データベース)

座標平面 円と接線 中央大杉並

問題文全文(内容文):
y=ax
a=?
*図は動画内参照

中央大学杉並高等学校
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
y=ax
a=?
*図は動画内参照

中央大学杉並高等学校
投稿日:2022.11.03

<関連動画>

仙台育英 正四面体の内接球の半径

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
内接球の半径=?
*図は動画内参照

仙台育英学園高等学校
この動画を見る 

気付くか、気付かないか 2021 埼玉県  B

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
BE=?
*図は動画内参照

2021埼玉県
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第2問〜平面幾何と3次関数の増減

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$AB=AC=1,\ BC=a$の二等辺三角形$ABC$の内接円を$I$、外接円を$O$とする。
ただし、$0 \lt a \lt \sqrt2$ である。また、三角形$ABC$と円$I$の3つの接点を頂点とする
三角形を$T$、3点$A,\ B,\ C$で円$O$に外接する三角形を$U$とする。次の問いに答えよ。
(1)三角形$T$の、$BC$に平行な辺の長さ$t$を$a$で表せ。
(2)三角形$U$の、$BC$に平行な辺の長さ$u$を$a$で表せ。
(3)$\frac{t}{u}=p$とする。$p$が最大となる$a$の値と、そのときの$p$の値を求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

一次不定方程式の不可能解の最大値の証明

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,bは互いに素な自然数である.x,yは0以上の整数であり,$ax+by$で表せない.
最大の整数はab-a-bであることを示せ.
この動画を見る 

精度90%の検査で陽性だったら90%陽性?答えが直感と違う?慶應(看護)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3つ振ったら出た目の最小値が2であった.3つの目がどの2つも互いに素である確率を求めよ.

慶應(看護)過去問
この動画を見る 
PAGE TOP