福田のわかった数学〜高校2年生055〜領域(10)線形計画法 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生055〜領域(10)線形計画法

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(10) 線形計画法\\
下の表にある錠剤A,Bから栄養素\textrm{I},\textrm{II},\textrm{III}をそれぞれ42g,48g,30g以上摂取したい。\\
錠剤A,Bの個数の和を最小にするとすれば何個ずつ飲めばよいか。\\
\\
\\
1錠あたりの栄養素(g)\\
\begin{array}{|c|c|c|c|}\hline
 & \textrm{I} & \textrm{II} & \textrm{III}\\
\hline A & 8 & 4 & 2\\
\hline B & 4 & 6 & 6\\
\hline
\end{array}
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(10) 線形計画法\\
下の表にある錠剤A,Bから栄養素\textrm{I},\textrm{II},\textrm{III}をそれぞれ42g,48g,30g以上摂取したい。\\
錠剤A,Bの個数の和を最小にするとすれば何個ずつ飲めばよいか。\\
\\
\\
1錠あたりの栄養素(g)\\
\begin{array}{|c|c|c|c|}\hline
 & \textrm{I} & \textrm{II} & \textrm{III}\\
\hline A & 8 & 4 & 2\\
\hline B & 4 & 6 & 6\\
\hline
\end{array}
\end{eqnarray}
投稿日:2021.09.10

<関連動画>

学習院大 三次方程式と複素数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'04学習院大学過去問題
a実数
$f(x)=4x^3-4ax^2+(a^2+3)x+a^2+4a+7$
(1)任意のaについてf(m)=0が成り立つ実数m
(2)f(x)=0の3つの解を複素数平面上に図示したとき、それらが正三角形になるようなaの値
この動画を見る 

神戸大 複素数 三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3-2|z|+1=0$を満たす$z$のうち実数でないものの個数を求めよ

出典:1968年神戸大学 過去問
この動画を見る 

数学「大学入試良問集」【10−5② 直線の通過領域の標準レベル】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
実数$t$が$0 \leqq t \leqq 1$をみたすときの直線$y=tx+t^2$の通過領域を求めよ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の点A(a,b)を1つ固定し、曲線y=x^2上の点P(x,x^2)と点A\\
との距離の2乗をg(x)とおく。関数y=g(x)のグラフが区間(-\infty,\infty)において下に凸\\
となるための条件はb \leqq \boxed{\ \ ア\ \ }\ となることである。b \gt \boxed{\ \ ア\ \ }\ のときy=g(x)のグラフは\\
2つの変曲点をもち、そのx座標は\ \boxed{\ \ イ\ \ }\ 及び\ \boxed{\ \ ウ\ \ }\ である。\\
ただし\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }とする。また、関数y=g(x)が極小となるxがただ1つであるために\\
a,bが満たすべき条件をb \leqq F(a)と書くと、F(a)=\boxed{\ \ エ\ \ } である。\\
b= F(a)のとき、関数y=g(x)はx=\boxed{\ \ オ\ \ }において最小値をとる。\\
さらに、連立不等式x \geqq 0,\ y \geqq x^2が表す領域をDとするとき、\\
曲線y=F(x)のDに含まれる部分の長さLを求めると、L=\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

東北大 指数不等式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
96年 東北大学過去問
全ての実数$x$に対して$2^{2x+2}+2^x+1-a\gt0$が成り立つような実数$a$の範囲を求めよ
この動画を見る 
PAGE TOP