【高校数学】 数Ⅱ-117 和と積の公式②・和(差)→積編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-117 和と積の公式②・和(差)→積編

問題文全文(内容文):
$\sin A+\sin B=$①____________

$\cos A+\cos B=$②____________

$\sin A-\sin B=$③____________

$\cos A-\cos B=$④____________

◎次の値を求めよう。

⑤$\sin 105°+\sin 15°$

⑥$\cos 75°-\sin 15°$

⑦$\cos75°+\cos15°$
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\sin A+\sin B=$①____________

$\cos A+\cos B=$②____________

$\sin A-\sin B=$③____________

$\cos A-\cos B=$④____________

◎次の値を求めよう。

⑤$\sin 105°+\sin 15°$

⑥$\cos 75°-\sin 15°$

⑦$\cos75°+\cos15°$
投稿日:2015.09.02

<関連動画>

【高校数学】 数Ⅱ-99 三角関数を含む方程式・不等式①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \leqq 2π$のとき、次の方程式を解こう。また、$\theta$の範囲に制限がないときの解を求めよう。

①$\sin \theta=+\displaystyle \frac{\sqrt{ 3 }}{2}$

②$2\cos\theta+1=0$

③$\sqrt{ 3 } \tan \theta=1$
この動画を見る 

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
この動画を見る 

【数学】3分で和積公式が馬鹿でもわかる考え方

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】3分で和積公式解説動画です
この動画を見る 

【9分でマスター!!】とても重要な加法定理を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#三角関数#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
加法定理について解説します。
①$\cos15$℃
②$\sin75$℃
$\alpha$は第1象限の角で$\sin\alpha=\frac{5}{13}$、$\beta$は第3象限の角で$\cos\beta=-\frac{3}{5}$とする。
$\sin(\alpha+\beta)$、$\cos(\alpha+\beta)$の値は?
この動画を見る 

【数Ⅱ】加法定理から出てくる公式【全部自力で導出しよう。暗記、ダメ絶対】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
(1$)\sin2x=cosx$$(0 \leqq x \lt 2\pi)$を解け.
(2)$t=tan\dfrac{\theta}{2}$とするとき,$\sin\theta,\cos\theta,\tan\theta$をtを用いて表せ.
この動画を見る 
PAGE TOP