【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】 極形式から三角比の値を求める ※問題文は概要欄

問題文全文(内容文):
$1+i$、$\sqrt{3}+i$を極形式で表すことにより、$cos \displaystyle \frac{5π}{12}$と$sin \displaystyle \frac{5π}{12}$の値を求めよ。
チャプター:

0:00 オープニング
0:04 極形式どうしの掛け算、まず 極形式で表してみる!
2:14 極形式どうしの掛け算を行い、5π/12を出してみる!
6:28 エンディング

単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
$1+i$、$\sqrt{3}+i$を極形式で表すことにより、$cos \displaystyle \frac{5π}{12}$と$sin \displaystyle \frac{5π}{12}$の値を求めよ。
投稿日:2025.01.21

<関連動画>

19京都府教員採用試験(数学:1番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣
(1)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3$
(2)$\frac{-1+\sqrt 3 i }{2}+(\frac{-1+\sqrt 3 i }{2})^2+(\frac{-1+\sqrt 3 i }{2})^3+ \cdots + (\frac{-1+\sqrt 3 i }{2})^{3k+2}$
この動画を見る 

福岡教育大 複素平面の基本

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ z=a+bi(a \gt 0,b \gt 0)z^2+\dfrac{1}{z^2}=1$を満たす.

(1)zを極形式で表せ$(0 \lt \theta \lt 2\pi)$

(2)$z^{100}+\dfrac{1}{z^{100}}$の値を求めよ.

(3)$z,z^2,z^{100}+\dfrac{1}{z^{100}}$の三点でできる三角形の面積を求めよ.

福岡教育大過去問
この動画を見る 

早稲田大学 数列、複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=1+2\sqrt{ 6 }i$
$Z^n=a_{n}+b_{n}i$

(1)
$a_{n}^2+b^2_{n}=5^{2n}$を示せ

(2)
$a_{n+2}=Pa_{n+1}+qa_{n}$ $P,q$の値

(3)
$a_{n}$は5の倍数でないことを示せ

(4)
$Z^n$は実数でないことを示せ

出典:2013年早稲田大学 過去問
この動画を見る 

福田の数学〜東京慈恵会医科大学2025医学部第4問〜複素数の絶対値の取りうる値の範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$z$は実数ではない複素数で、

$z+\dfrac{1}{z-1}$が正の実数となるものとする。

このとき、

$ \left \vert \dfrac{1}{z-1}-\dfrac{z- \overline{z}}{2}+1 \right \vert $がとりうる値の

範囲を求めよ。

ただし、$\overline{z}$は$z$に共役な複素数とする。

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

大阪大の問題の背景 特に文系の人見てください

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#複素数平面#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$ \cos\dfrac{2}{7}\pi, \cos\dfrac{4}{7}\pi, \cos\dfrac{6}{7}\pi$を解にもつ
$3$次方程式$ x^3+ax^2+bx+c=0$を求めよ.*$ z^7=1$
(2)$ f(x)=8x^3+4x^2-4x-1$,$f\left(\cos\dfrac{2}{7}\pi \right)=0$を示せ.
この動画を見る 
PAGE TOP