【数学】確率:センター試験(平成30年)本試 - 質問解決D.B.(データベース)

【数学】確率:センター試験(平成30年)本試

問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
チャプター:

0:00 本編開始
0:32 (3)の解説
2:09 (4)の解説

単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に -1点を加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

 ・持ち点が再び0点になった場合は、その時点で終了する。

 ・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が -2点である確率は □
である。また、コインを2回投げ終わって持ち点が1点である確率は □
である。
(2) 持ち点が再び0点になることが起こるのは、コインを
□ 回投げ終わったときである。コインを □回投げ終わって持ち点が0点になる確率は
□である。
(3) ゲームが終了した時点で持ち点が4点である確率は □である。
(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって持ち点が1点である条件付き確率は□である。
投稿日:2022.09.08

<関連動画>

福田のわかった数学〜高校1年生073〜場合の数(12)組み分け

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(12) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

【理数個別の過去問解説】2015年度京都大学 数学 文系第3問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
この動画を見る 

福田の数学〜複雑な条件付き確率に挑戦しよう〜慶應義塾大学2023年経済学部第3問〜条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]袋の中に、 1 から 9 までの数字を重複なく 1 つずっ記入したカ ー ドが 9 枚入ている。この袋からカ ー ドを 1 枚引き、カ ー ドに記入された数字を記録してから袋に戻すことを試行という。この試行を 5 回繰り返し行う。また、以下の (a), (b) に従い、各回の試行後の点数を定める。ただし、 1 回目の試行前の点数は 0 点とする。
(a) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いていない場合は、その回の試行前の点数にその回の試行で記録した数字を加える。
(b) 各回の試行後、その回の試行で記録した数字と同じ数字のカ ー ドをそれまでに引いている場合は、その回の試行前の点数にその回の試行で記録した数字を加え、さらに 1000 点を加える。

(1)3回の試行後の点数は23点であった。それまでに引いた3枚のカードに記入された数字は、小さい順に$\fbox{ア},\fbox{イ},\fbox{ウ}$である。これら3つの数字の文さんは$\dfrac{\fbox{エオ}}{\fbox{カ}}$である。
(2)4 回の試行後の点数が 23 点となる確率は$\dfrac{\fbox{キ}}{\fbox{クケコ}}$である。
(3)2 回の試行後の点数が 8 点または 1008点となる確率は$\dfrac{\fbox{サ}}{\fbox{シス}}$である。
(4)2 回の試行後の点数が 8 点または 1008 点であるとき、 5 回の試行後の点数が 2023 点となる条件付き確率は$\dfrac{\fbox{セソ}}{\fbox{タチツテ}}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP