福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)

問題文全文(内容文):
数学$\textrm{III}$ 微分(11) 定義に従って(3)
$f'(a)$が存在するとき、
$\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}$
を$a,f(a),f'(a)$で表せ。
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(11) 定義に従って(3)
$f'(a)$が存在するとき、
$\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}$
を$a,f(a),f'(a)$で表せ。
投稿日:2021.08.21

<関連動画>

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(2)〜3次関数の増減と方程式の解の個数

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$a$,$b$,$c$を実数とし、実数$x$の関数$f(x)$を$f(x)$=$x^3$+$ax^2$+$bx$+$c$ とおく。
$f(x)$は$x$=-1で極値3をとり、方程式$f(x)$=0は$x$=-2を解にもつ。
(i)$a$=$\boxed{\ \ ウ\ \ }$, $b$=$\boxed{\ \ エ\ \ }$, $c$=$\boxed{\ \ オ\ \ }$である。
(ii)Kを実数とする。方程式$f(x)$=$4x$+K が持つ異なる実数解の個数が2個となるとき、Kの値は$\boxed{\ \ カ\ \ }$である。
この動画を見る 

【高校数学】数Ⅲ-114 平均値の定理②

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ

①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$

➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$

この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=e^x$を考える。
(1)$a,b$を実数とし、$a \geqq 0$とする。曲線Cと直線$y=ax+b$が共有点をもつため
のaとbの条件を求めよ。
(2)正の実数tに対し、C上の点$A(t,e^t)$を中心とし、直線$y=x$に接する円Dを
考える。直線$y=x$と円Dの接点Bのx座標は$\boxed{\ \ タ\ \ }$であり、
円Dの半径は$\boxed{\ \ チ\ \ }$である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標
をそれぞれX(t),Y(t)とする。このとき、等式
$\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0$
が成り立つような実数kを定めると$k=\boxed{\ \ ツ\ \ }$である。
ただし、$\lim_{t \to \infty}te^{-t}=0$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第2問〜直線の交点と関数の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 座標平面上に点A(2,0)と点B(0,1)がある。正の実数$t$に対して、$x$軸上の点P(2+$t$, 0)と$y$軸上の点Q(0, 1+$\displaystyle\frac{1}{t}$)を考える。
(1)直線AQの方程式を、$t$を用いて表せ。
(2)直線BPの方程式を、$t$を用いて表せ。
直線AQと直線BPの交点をR($u$,$v$)とする。
(3)$u$と$v$を、$t$を用いて表せ。
(4)$t$>0の範囲で、$u$+$v$の値を最大にする$t$の値を求めよ。
この動画を見る 
PAGE TOP