【数B】【数列】自然数の式の証明3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【数列】自然数の式の証明3 ※問題文は概要欄

問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
投稿日:2025.04.28

<関連動画>

【高校数学】  数Ⅱ-6  整式の割り算②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次のxについての整式A,Bにおいて、AをBで割った商と余りを求めよう。

①$A=3x^3-7a^2x+5a^3-2ax^2,B=3x+a$

②$A=x^2+2xy+3y^2-x+y-1,B=x+3y$
この動画を見る 

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$

2022一橋大学文系過去問
この動画を見る 

【数学Ⅱ/高2の予習】恒等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式が$x$についての恒等式となるように、定数$a,b,c$の値を求めよ。
(1)
$3x^2+8x+6=a(x+1)^2+b(x+1)+c$


(2)
$\displaystyle \frac{3}{(x-1)(2x+1)}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{b}{2x-1}$
この動画を見る 

東大 不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての正の実数$x,y$に対し,
$\sqrt{x}+\sqrt{y}\leqq k\sqrt{2x+y}$が成り立つような実数$k$の最小値を求めよ.

1995東大(文理共通)
この動画を見る 

福田のおもしろ数学257〜3変数の不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b,c>0$, $abc=1$ のとき
\begin{equation*}
\left(a-1+\frac{1}{b}\right) \left(b-1+\frac{1}{c}\right) \left(c-1+\frac{1}{a}\right) \leq 1
\end{equation*}
を証明して下さい。
この動画を見る 
PAGE TOP