【高校数学】 数Ⅱ-167 不定積分② - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-167 不定積分②

問題文全文(内容文):
①条件$F'(x)=6x^2-2x-3,F(2)=0$を満たす関数$F(x)$を求めよう。

②点(2,1)を通る曲線$y=f(x)$上の点$(x,y)$における接線の傾きが$2x-4$であるとき、$f(x)$を求めよう。
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①条件$F'(x)=6x^2-2x-3,F(2)=0$を満たす関数$F(x)$を求めよう。

②点(2,1)を通る曲線$y=f(x)$上の点$(x,y)$における接線の傾きが$2x-4$であるとき、$f(x)$を求めよう。
投稿日:2015.10.27

<関連動画>

#広島市立大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{\cos^3\ x}{\sin^2\ x} dx$

出典:2016年広島市立大学
この動画を見る 

【数Ⅱ】【微分法と積分法】1/6公式の利用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_{α}^β(x-α)(x-β)dx=-\dfrac{1}{6}(β-α)³$

を用いて、次の定積分を求めよ。
(1)$\int_{-1}^2(x²-x-2)dx$
(2)$\int_{1-\sqrt 2}^{1+\sqrt2}(x²-2x-1)dx$
(3)$\int_{3}^4(14x-24-2x²)dx $
この動画を見る 

東北大 積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6ax^2+bx+1$
$x=a(a \gt 0)$で極大値
$f(x)$と直線$y=f(a)$で囲まれた面積が$a^2$
$a$の値を求めよ

出典:1996年東北大学 過去問
この動画を見る 

大学入試問題#591「技をかけたくなる積分」 茨城大学(2021) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (1+x+x^2)^2 dx$

出典:2021年茨城大学 入試問題
この動画を見る 

北海道大 積分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'02北海道大学過去問題
a,b,cは定数
$f(x)=x^2+ax+b,g(x)=x+c$
(1)$\int_0^1f(x)dx = \int_0^1g(x)dx$となるためのa,b,cの条件
(2)(1)の条件のもとで、$0 \leqq x \leqq 1$における2つの関数f(x)とg(x)の共有点の個数
この動画を見る 
PAGE TOP