新潟大 微分・積分 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

新潟大 微分・積分 Mathematics Japanese university entrance exam

問題文全文(内容文):
新潟大学過去問題
$C:f(x)=2x^3-12x$
(1,-2)を通るCの接線をl
(1)lの方程式
(2)Cとlで囲まれる面積
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
新潟大学過去問題
$C:f(x)=2x^3-12x$
(1,-2)を通るCの接線をl
(1)lの方程式
(2)Cとlで囲まれる面積
投稿日:2018.12.12

<関連動画>

福田の数学〜筑波大学2023年理系第1問〜3次関数の接線と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。

2023筑波大学理系過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xの関数$f(x)$を$f(x)=x^3$とする。
(1)xの関数$g(x)$を$g(x)=x^3-2x^2-x+3$とする。曲線$y=f(x)$と$y=g(x)$は
3個の交点をもつ。それら交点を$\ x \ $座標が小さい順にA,B,Cとすると、
点$A,B,C$の$\ x\ $座標はそれぞれ$ \boxed{ア},\ \boxed{イ},\ \boxed{ウ}$ である。

曲線$y=g(x)$の接線の傾きが最小となるのは、
接点の$\ x\ $座標が$\frac{\boxed{エ}}{\boxed{オ}}$のときで、
その最小値は$-\frac{\boxed{カ}}{\boxed{\ \ キ\ \ }}$である。
また、点Bを通る$y=g(x)$の接線の傾きの最小値は$-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(2)$x$ の関数$h(x)$が

$h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4$
を満たすとき、$h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4$である。
曲線$y=f(x)$と$y=h(x)$の交点の中点は$(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})$であり、

$y=f(x)$と$y=h(x)$で囲まれる図形の面積は
原点を通る直線$y=\boxed{\ \ コ\ \ }x$で2等分される。

2022明治大学全統過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】接線で囲まれた面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-6x+7$と、この放物線上の点$(4,-1),(0,7)$における接線で囲まれた図形の面積を求めよ。
この動画を見る 

青山学院大 放物線の中の四角形

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
青山学院大学過去問題
$f(x)=-x^2+4x$
原点O,A(4,0),P(p,f(p)),Q(q,f(q)) (0<p<q<4)
四角形OAQPの面積の最大値
この動画を見る 

【短時間でポイントチェック!!】定積分 面積② 直線と曲線で囲まれた面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-x-4,y=x-1$で囲まれた部分の面積
この動画を見る 
PAGE TOP