17東京都教員採用試験(数学:1-7番 シグマと極限値) - 質問解決D.B.(データベース)

17東京都教員採用試験(数学:1-7番 シグマと極限値)

問題文全文(内容文):
1⃣-(7)
$\displaystyle \lim_{ n \to \infty } \frac{2(1+2^2+3^2+\cdots+n^2)^4}{(1+2^5+3^5+\cdots+n^5)^2}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#その他#数学(高校生)#数B#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(7)
$\displaystyle \lim_{ n \to \infty } \frac{2(1+2^2+3^2+\cdots+n^2)^4}{(1+2^5+3^5+\cdots+n^5)^2}$
投稿日:2020.07.22

<関連動画>

一橋大学 確率 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016一橋大学過去問題
硬貨が2枚ある。最初は2枚とも表の状態で置かれている。次の操作をn回行った後、硬貨が2枚とも裏になっている確率を求めよ。
(操作)2枚とも表、又は2枚とも裏のとき、2枚とも投げる。表裏各1枚のときには表の硬貨だけ投げる。
この動画を見る 

福田の数学〜早稲田大学2024商学部第1問(3)〜漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$C$を$1$でない正の実数とする。正の実数の数列$\{a_n\}$が次の条件を満たしている。
$a_1=C,$${a_n}^{n+1}{a_{n+1}}^n=C^{-(2n+1)}$
このとき、一般項$a_n$を$C$を用いて表せ。
この動画を見る 

【数B】【数列】初項4、公差5の等差数列{a_n}と、初項8,公差7の等差数列{b_n}について、これら2つの数列に共通に含まれている項を、順に並べてできる数列{c_n}の一般項を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項4、公差5の等差数列${a_n}$と、初項8,公差7の等差数列${b_n}$について、これら2つの数列に共通に含まれている項を、順に並べてできる数列${c_n}$の一般項を求めよ。
この動画を見る 

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る 

【数B】数列:N次式型の漸化式! a1=1,a[n+1]=2a[n]-n²+2nで定められる数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=2a_n-n²+2n$で定められる数列${an}$の一般項を求めよ。
この動画を見る 
PAGE TOP