問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} ある国の国民がある病気に罹患している確率をpとする。\hspace{140pt}\\
その病気の検査において、罹患者が陽性と判定される確率をq,\\
非罹患者が陽性と判定される確率をrとする。ただし0 \lt p \lt 1,\ 0 \lt r \lt qである。\\
さらに、検査で陽性と判定された人が罹患している確率をsとする。次の問いに答えよ。\\
(1)sを\ p,\ q,\ rを用いて表せ。\\
(2)k回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性\\
と判断された人が罹患している確率をa_kとする。a_kをp,q,r,kを用いて表せ。\\
(3)k回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、\\
最終的に陽性と判断された人が罹患している確率をb_kとする。b_kをp,q,r,kを用いて表せ。\\
(4)s,\ a_2,\ b_2の大小関係を示せ。
\end{eqnarray}
2022早稲田大学社会科学部過去問
\begin{eqnarray}
{\large\boxed{1}} ある国の国民がある病気に罹患している確率をpとする。\hspace{140pt}\\
その病気の検査において、罹患者が陽性と判定される確率をq,\\
非罹患者が陽性と判定される確率をrとする。ただし0 \lt p \lt 1,\ 0 \lt r \lt qである。\\
さらに、検査で陽性と判定された人が罹患している確率をsとする。次の問いに答えよ。\\
(1)sを\ p,\ q,\ rを用いて表せ。\\
(2)k回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性\\
と判断された人が罹患している確率をa_kとする。a_kをp,q,r,kを用いて表せ。\\
(3)k回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、\\
最終的に陽性と判断された人が罹患している確率をb_kとする。b_kをp,q,r,kを用いて表せ。\\
(4)s,\ a_2,\ b_2の大小関係を示せ。
\end{eqnarray}
2022早稲田大学社会科学部過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} ある国の国民がある病気に罹患している確率をpとする。\hspace{140pt}\\
その病気の検査において、罹患者が陽性と判定される確率をq,\\
非罹患者が陽性と判定される確率をrとする。ただし0 \lt p \lt 1,\ 0 \lt r \lt qである。\\
さらに、検査で陽性と判定された人が罹患している確率をsとする。次の問いに答えよ。\\
(1)sを\ p,\ q,\ rを用いて表せ。\\
(2)k回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性\\
と判断された人が罹患している確率をa_kとする。a_kをp,q,r,kを用いて表せ。\\
(3)k回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、\\
最終的に陽性と判断された人が罹患している確率をb_kとする。b_kをp,q,r,kを用いて表せ。\\
(4)s,\ a_2,\ b_2の大小関係を示せ。
\end{eqnarray}
2022早稲田大学社会科学部過去問
\begin{eqnarray}
{\large\boxed{1}} ある国の国民がある病気に罹患している確率をpとする。\hspace{140pt}\\
その病気の検査において、罹患者が陽性と判定される確率をq,\\
非罹患者が陽性と判定される確率をrとする。ただし0 \lt p \lt 1,\ 0 \lt r \lt qである。\\
さらに、検査で陽性と判定された人が罹患している確率をsとする。次の問いに答えよ。\\
(1)sを\ p,\ q,\ rを用いて表せ。\\
(2)k回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性\\
と判断された人が罹患している確率をa_kとする。a_kをp,q,r,kを用いて表せ。\\
(3)k回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、\\
最終的に陽性と判断された人が罹患している確率をb_kとする。b_kをp,q,r,kを用いて表せ。\\
(4)s,\ a_2,\ b_2の大小関係を示せ。
\end{eqnarray}
2022早稲田大学社会科学部過去問
投稿日:2022.08.21