福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1)

問題文全文(内容文):
数学$\textrm{II}$ 領域(5) 領域と最大最小(1)
$x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8$
のとき、$ax+y$の最大値を次のそれぞれの場合に
ついて求めよ。
$(1)a=-1  (2)a=1  (3)a=4$
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(5) 領域と最大最小(1)
$x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8$
のとき、$ax+y$の最大値を次のそれぞれの場合に
ついて求めよ。
$(1)a=-1  (2)a=1  (3)a=4$
投稿日:2021.08.26

<関連動画>

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$の2つの解をα、βとするとき、次の式の値を求めよ。
$\frac{1}{(α-2)(β-2)}+\frac{1}{(α-1)(β-1)}+\frac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1)$x^2-xy-xz+2y-2$
(2)$2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1)$x+y=3$
$x+y+xy=-7$
(2)$x^2+y^2=13$
$xy=6$
この動画を見る 

大学入試問題#4 慶應義塾大学(2021) 軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
放物線$y=x^2$上を動く2点$A,B$と原点$O$を線分で結んだ
$\triangle OAB$において
$\angle AOB=90^{ \circ }$とする。
このとき、$\triangle OAB$の重心$G$の軌跡を求めよ。

出典:2021年慶應義塾大学 入試問題
この動画を見る 

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$において$\dfrac{x}{2}+\dfrac{2}{x^2}$の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
この動画を見る 

高専数学 微積II #48(4)(5) 全微分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の関数$z=f(x,y)$の全微分$dz$を求めよ.

(4)$z=\tan(x^2+y^2)$
(5)$z=(2x+y)e^{x+3y}$
この動画を見る 
PAGE TOP