問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1 (2)a=1 (3)a=4
\end{eqnarray}
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1 (2)a=1 (3)a=4
\end{eqnarray}
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1 (2)a=1 (3)a=4
\end{eqnarray}
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1 (2)a=1 (3)a=4
\end{eqnarray}
投稿日:2021.08.26