福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1)

問題文全文(内容文):
数学$\textrm{II}$ 領域(5) 領域と最大最小(1)
$x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8$
のとき、$ax+y$の最大値を次のそれぞれの場合に
ついて求めよ。
$(1)a=-1  (2)a=1  (3)a=4$
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 領域(5) 領域と最大最小(1)
$x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8$
のとき、$ax+y$の最大値を次のそれぞれの場合に
ついて求めよ。
$(1)a=-1  (2)a=1  (3)a=4$
投稿日:2021.08.26

<関連動画>

【数Ⅱ】【図形と方程式】2直線の関係3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問1
直線$y=2x$を$l$とするとき、次のものを求めよ。
(1)$l$に関して、点$\rm A(5,0)$と対称な点Bの座標
(2) $l$に関して、直線$3x+y=15$と対称な直線の方程式

問2
$k$を定数とする。直線$(k+2)x+(2k-3)y=5k-4$は$k$の値に関係なく定点を通る。その定点の座標を求めよ。

問3
$x-y=1,2x-3y=1,ax+by=1$が1点で交わらなければ、3点$(1,ー1),(2,ー3),(a,b)$は一直線上にあることを証明せよ。
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第1問(3)〜球面が平面から切り取る領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)座標空間における$2$点

$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$

を直径の両端とする球面$S$がある。

球面$S$が$xy$平面を切り取る領域の面積は

$\boxed{カ}\pi$である。

また、球面$S$が$z$軸を切り取る線分の長さは

$\sqrt{\boxed{キ}}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

福田のおもしろ数学089〜サイン100乗とコサイン100乗の和の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\theta$がすべての実数を動くとき$\sin^{100}\theta$+$\cos^{100}\theta$ の最大値、最小値を求めよ。
この動画を見る 

#宮崎大学2024#定積分_17#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#宮崎大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{3}} \cos^2\displaystyle \frac{x}{4} dx$

出典:2024年宮崎大学
この動画を見る 

京都府立医・長崎大 三角関数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#京都府立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け

長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
この動画を見る 
PAGE TOP