福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生050〜領域(5)領域と最大最小(1)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1  (2)a=1  (3)a=4
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(5) 領域と最大最小(1)\\
x \geqq 0,\ y \geqq 0,\ 3x+y \leqq 9,\ x+2y \leqq 8\\
のとき、ax+yの最大値を次のそれぞれの場合に\\
ついて求めよ。\\
(1)a=-1  (2)a=1  (3)a=4
\end{eqnarray}
投稿日:2021.08.26

<関連動画>

7の2024乗の下4桁

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^{2024}$の下4桁の数
この動画を見る 

和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。

(1)$f(x)$と$y=mx$で囲まれる面積を求めよ

(2)$m$の値と極大値を求めよ
この動画を見る 

19奈良県教員採用試験(数学:2番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#接線と増減表・最大値・最小値#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$0 \leqq θ \leqq \pi$
$y= sin2θ + 2(sinθ+cosθ)-i$のMAX、minとそのときのθの値を求めよ。
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^x=3^y$
$4^{\frac{x}{y}} + 3^{\frac{y}{x}}=?$
この動画を見る 

4次方程式の解でできた式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る 
PAGE TOP