立教大 複素数基本 - 質問解決D.B.(データベース)

立教大 複素数基本

問題文全文(内容文):
$Z=\cos \dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$a=Z+\dfrac{1}{Z}$
$b=Z^2+\dfrac{1}{Z^2}$
$c=Z^2+\dfrac{1}{Z^3}$
$a^3+b^3+c^3-3ab$の値を求めよ.

2021立教大過去問
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos \dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$a=Z+\dfrac{1}{Z}$
$b=Z^2+\dfrac{1}{Z^2}$
$c=Z^2+\dfrac{1}{Z^3}$
$a^3+b^3+c^3-3ab$の値を求めよ.

2021立教大過去問
投稿日:2021.07.31

<関連動画>

福田の数学〜早稲田大学2023年人間科学部第1問(2)〜式の値と1の3乗根

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)$x^2$+$x$+1=0 のとき、$x^{20}$+$x$=$\boxed{\ \ ウ\ \ }$ である。
この動画を見る 

複素数の7乗の実部の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{7i}}{2})^7$
の実部を求めよ
この動画を見る 

素数問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q,r$は異なる素数である.
$p^2=q^2+8r^2$を解け.
この動画を見る 

京都大2021 素数という条件は必要か

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$が素数なら$P^4+14$は素数でないことを示せ.

2021京都大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。

(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP