横浜市立(医)3次方程式の実数解の個数 - 質問解決D.B.(データベース)

横浜市立(医)3次方程式の実数解の個数

問題文全文(内容文):
$x^3+3ax^2+3ax+a^3=0$の実数解の個数を求めよ.

2004横浜市立(医)
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+3ax^2+3ax+a^3=0$の実数解の個数を求めよ.

2004横浜市立(医)
投稿日:2020.11.21

<関連動画>

【高校数学】むやみに代入するな!因数定理のちょっとした裏技! #Shorts

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。

$x^3+6x^2-6x+7$
この動画を見る 

福田のわかった数学〜高校2年生012〜高次方程式の作成

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
$\alpha=\sqrt{13}+\sqrt{9+2\sqrt{17}}+\sqrt{9-2\sqrt{17}}$
を解にもつ整数係数であり$x^4$の係数1の
4次方程式を作れ。また、残りの解を求めよ。
この動画を見る 

綺麗な連立4元方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$を実数とする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
a^3+b=c \\
b^3+c=d \\
c^3+d=a \\
d^3+a=b \\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

お茶の水女子大 整式の剰余 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$を$x^2+x+1$で割ると$x+2$余り、$x^2+1$で割ると$1$余る
$f(x)$を$(x^2+x+1)(x^2+1)$で割った余りを求めよ

出典:2006年お茶の水女子大学 過去問
この動画を見る 

宮城教育大・多項式の剰余

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P(x),Q(x)$はxの実数係数多項式である.
$P(x),Q(x)$が$x^2+1$で割り切れるなら$P(x),Q(x)$の少なくとも一方は$x^2+1$で割り切れることを証明せよ.

(1)$P(i)=0$ならば$P(x)$は$x^2+1$で割り切れることを示せ.

宮城教育大過去問
この動画を見る 
PAGE TOP