どっちがでかい?大事なあの公式のエレガントな証明 - 質問解決D.B.(データベース)

どっちがでかい?大事なあの公式のエレガントな証明

問題文全文(内容文):
どちらが大きいか?
$999! $vs $500^{999}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$999! $vs $500^{999}$
投稿日:2021.12.14

<関連動画>

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

ガウス記号×数列!難しそうに見えるけど・・・【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
実数$x$に対し,$x$を超えない最大の整数を$\lbrack x \rbrack$で表す。数列{$a_k$}を

$a_k=2^{[\sqrt{k}]}$ $(k=1,2,3,・・・)

で定義する。正の整数$n$に対して

$b_n$=$\displaystyle \sum_{k=1}^n^{2} a_k$ を求めよ。

一橋大過去問
この動画を見る 

熊本大(医)連立漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=2,b_{1}=1$
$a_{k+1}=3a_{k}+b_{k}$
$b_{k+1}=a_{k}+3b_{k}$

出典:熊本大学 過去問
この動画を見る 

2021!を5の504乗で割ったあまり

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021!$を$5^{504}$で割った余りを求めよ.
この動画を見る 

愛媛大 解けないタイプの漸化式

アイキャッチ画像
単元: #数列#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023愛媛大学過去問題
$a_{1}=2$
$a_{n+1}=a_{n}^2+2(n=1,2,3,\cdots)$
mが自然数なら$a_{2m}$は6の倍数であることを示せ
この動画を見る 
PAGE TOP