岩手大 漸化式 - 質問解決D.B.(データベース)

岩手大 漸化式

問題文全文(内容文):
$n=1,2,3・・・・$
$a_1=31$
$a_{n+1}=\dfrac{(n+3)a_n-28}{n+2}$
一般項を求めよ.

2020岩手大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3・・・・$
$a_1=31$
$a_{n+1}=\dfrac{(n+3)a_n-28}{n+2}$
一般項を求めよ.

2020岩手大過去問
投稿日:2021.03.30

<関連動画>

20年5月数学検定準1級1次試験(数列)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
3⃣$3a_n-2S_n=3^n$
$(S_n=a_1+a_2+\cdots+a_n)$
この動画を見る 

大学入試問題#53 横浜市立大学(2020) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ

出典:2020年横浜市立大学 入試問題
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

【高校数学】等比数列の和を丁寧に 3-7【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【数学B】等比数列の和を丁寧に説明
この動画を見る 

弘前大(医、他)分数型漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010弘前大学過去問題
$a_1 = 4 \quad a_{n+1} = \frac{4a_n+3}{a_n+2}$
(1) $b_n = \frac{a_n -3}{a_n+1}$
$b_n$の漸化式を求めよ。
(2)$a_n$を求めよ。
この動画を見る 
PAGE TOP