【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり) - 質問解決D.B.(データベース)

【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)

問題文全文(内容文):
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。 
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
チャプター:

0:00 オープニング
0:12 グラフの予想パート(飛ばしていいです)
0:56 本題 f(x)
7:36 g(x)
11:36 まとめ、エンディング
12:00 おまけトーク

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。 
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
投稿日:2021.09.01

<関連動画>

福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題013〜京都大学2015年度理系数学第3問〜極限と追い出しの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とするとき、(a,0)を通り、$y=e^x+1$に接する直線がただ
一つ存在することを示せ。

(2)$a_1=1$として、$n=1,2,\cdots$について、$(a_n, 0)$を通り、$y=e^x+1$に接する
直線の接点のx座標を$a_{n+1}$とする。このとき、$\lim_{n \to \infty}(a_{n+1}-a_n)$を求めよ。

2015京都大学理系過去問
この動画を見る 

数学「大学入試良問集」【18−1三角関数の微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#日本女子大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{\sin\ x}{3+\cos\ x}$の最大値を最小値を求めよ。
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数と微分の表し方 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数について, $\frac{ dy }{ dx }$ を求めよ。ただし (1)(2)では $y$ を用いて表してもよい。また(3)(4)では、t$$ の関数として表せ。$a,b$は正の定数とする。

$x²+3xy-y²=1$

$x$の関数 $y$ が、$t$ を媒介変数として $x=cost +tsint, y= sint - tcost$ と表せるとき、$\frac{ d^2 y }{ dx^2 }$ を$ t $の関数として表せ。
この動画を見る 

福田のわかった数学〜高校3年生理系066〜微分(11)定義に従った微分(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(11) 定義に従って(3)
$f'(a)$が存在するとき、
$\lim_{x \to a}\frac{a^2f(x)-x^2f(a)}{x-a}$
を$a,f(a),f'(a)$で表せ。
この動画を見る 
PAGE TOP