2021 ガウス記号 - 質問解決D.B.(データベース)

2021 ガウス記号

問題文全文(内容文):
$[(45+\sqrt{2021})^{2021}]$の$1$の位の数を求めよ.
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(45+\sqrt{2021})^{2021}]$の$1$の位の数を求めよ.
投稿日:2020.12.01

<関連動画>

すべてを○けろ!!久留米大附設

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a,b,c,d,e$は正の数
$ab=1,bc=2,cd=3,de=4,ea=5$のとき
$a=?$
久留米大学付設高等学校
この動画を見る 

【共通テスト】数学IA 第1問で満点取る思考回路、解説します(2023年本試)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第1問で満点取る思考回路、解説
(1)
実数$x$についての不等式$|x+6| \leqq 2$の解は[アイ]$ \leqq x \leqq $[ウエ]である。
よって実数$a,b,c,d$が$|(1-\sqrt{ 3 }(a-b)(c-d)+6|\leqq 2$を満たしているとき、
$1-\sqrt{ 3 }$は負であることに注意すると、$(a-b)(c-d)$のとり得る値の範囲は
[オ]+[カ]$\sqrt{ 3 } \leqq (a-b)(c-d) \leqq$[キ]+[ク]$\sqrt{ 3 }$であることがわかる。
$(a-b)(c-d)=$[キ]+[ク]$\sqrt{ 3 }$・・・・①

であるとき、さらに

$(a-b)(c-d)=-3+\sqrt{ 3 }$・・・・②

が成り立つならば

$(a-b)(c-d)=$[ケ]+[コ]$\sqrt{ 3 }$・・・・③

であることが、等式①、②、③の左辺を展開して比較することによりわかる。


(2)
点Oを中心とし、半径が5である円0がある。
この円周上に2点A,BをAB=6となるようにとる。
また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
①$\sin \angle ACB =$[サ]である。また、点Cを$\angle ACB$が純角となるようにとるとき、$\cos \angle ACB =$[シ]である。

②点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直角ABに垂直な直線を引き、直線ABとの交点をDとするとき、$\tan \angle OAD =$[ス]である。
 また、$\triangle ABC$の面積は[セソ]である。
この動画を見る 

長方形と半円 3通りで解説しました

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る 

中学生でも理解可能。ルートの中の二乗  奈良大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=a^2+1$ , $a=\sqrt 6 -2$
$\sqrt {x+2a} + \sqrt {x-2a} =?$

奈良大学
この動画を見る 

福田のわかった数学〜高校1年生037〜部屋割り論法(2)の訂正版

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 部屋割り論法(2)\\
座標平面上に異なる5個の格子点がある。これら5個の格子点の中に、\\
結んだ線分の中点がまた格子点となるような2点が存在することを示せ。
\end{eqnarray}
この動画を見る 
PAGE TOP