嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ - 質問解決D.B.(データベース)

嵐の方程式 5-1=0 をオイラーの公式を使って よさまつが証明するよ

問題文全文(内容文):
オイラーの公式 説明動画です
単元: #数A#数Ⅱ#図形の性質#式と証明#恒等式・等式・不等式の証明#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式 説明動画です
投稿日:2020.02.28

<関連動画>

2021早稲田大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-x^2+1$
①$x^6$を$f(x)$で割った余りを求めよ.
②$x^{2021}$を$f(x)$で割った余りを求めよ.
③$(x^2-1)^{3k}-1$は$f(x)$で割り切れることを示せ.$k$は自然数である.

2021早稲田(理)
この動画を見る 

福田の数学〜名古屋大学2023年理系第4問〜二項係数と整式の展開

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。

2023名古屋大学理系過去問
この動画を見る 

【高校数学】条件付きの等式の証明~恒等式~ 1-9【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の等式が成り立つことを証明せよ
$(1)a+b+c=0$のとき$a^2-2bc=b^2+c^2$
$\displaystyle(2)\frac{a}{b}=\frac{c}{d}$のとき$\displaystyle\frac{a+c}{b+d}=\frac{a-c}{b-d}$
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>b≧c>0 のとき、次の空欄に記号≧ ,≦ ,> ,<のどれかを記入して正しい関係が成り立つようにせよ。ただし、これが不可能の場合には×とせよ。
(1)$2(ac+b^2 ) □ b(4a+c)$
(2)$a^2+2bc□2ab+ca$
(3)$a^2+2(b^2+c^2) □2a(b+c)$
この動画を見る 

福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
この動画を見る 
PAGE TOP