福田のおもしろ数学220〜二項係数のシグマ計算 - 質問解決D.B.(データベース)

福田のおもしろ数学220〜二項係数のシグマ計算

問題文全文(内容文):
$\displaystyle\sum^{20}_{k=5} {}_{k}\mathrm{C}_{4}$ を計算して下さい。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\sum^{20}_{k=5} {}_{k}\mathrm{C}_{4}$ を計算して下さい。
投稿日:2024.08.09

<関連動画>

福田のおもしろ数学010〜10秒で解けるキミは天才〜階乗の和の1の位

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1 !十 2 !十 3 !十・・・十 2023 !十 2024 !の 1 の位を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(5)〜確率漸化式の基本

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (5)地点Aと地点Bがあり、Kさんは時刻0に地点Aにいる。Kさんは1秒ごとに以下の確率で移動し、時刻0からn秒後に地点Aか地点Bにいる。
$\left\{\begin{array}{1}
・地点Aにいるとき\\
\frac{1}{2}の確率で地点Aにとどまり、\frac{1}{2}の確率で地点Bに移動する。\\
・地点Bにいるとき
\frac{1}{6}の確率で地点Bにとどまり、\frac{5}{6}の確率で地点Aに移動する。\\
\end{array}\right.$
Kさんが時刻0からn秒後に地点Aにいる確率を$a_n$、地点Bにいる確率を$b_n$で表す。ただし、nは0以上の整数とする。
(i)$a_{n+1}$を$a_n$と$b_n$で表すと$a_{n+1}$=$\boxed{\ \ サ\ \ }$$a_n$+$\boxed{\ \ シ\ \ }$$b_n$であり、$a_4$=$\boxed{\ \ ス\ \ }$
(ii)数列{$a_n$}の一般項$a_n$をnの式で表すと$\boxed{\ \ セ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

9月からでも間に合うチート級参考書<数学編>

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#参考書紹介
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学編】9月からでも間に合う参考書紹介動画です
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第2問〜絶対値を含む漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$数列$\left\{a_n\right\}$は
$a_{n+1}=-|a_n|-\frac{1}{2}a_n+5\hspace{15pt}(n=1,2,3,\ldots)$
を満たしている。
(1)$a_1=\frac{1}{2}$ならば、$a_2=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }},\ a_3=-\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)$-2 \leqq a_n \leqq -1$ならば$a_{n+1}$および$a_{n+2}$の取り得る値の範囲は、
それぞれ$\boxed{\ \ キ\ \ }\leqq a_{n+1} \leqq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ -\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\leqq a_{n+1} \leqq -\boxed{\ \ シ\ \ }$である。
以下、$a_1=2+(\frac{2}{3})^{10}$とする。
(3)$a_n \lt 0$となる自然数nの内最小のものをmとすると、$m=\boxed{\ \ スセ\ \ }$である。
(4)(3)の$m$に対して、自然数kが$2k \geqq m$を満たすとき、
$a_{2k+2}=-\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\ a_{2k}-\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
より
$a_{2k}=-\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナ\ \ }}+\frac{3}{\boxed{\ \ ニヌ\ \ }}(-\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }})^{k-\boxed{\ \ ハ\ \ }}$
が成り立つ。

2022慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP