【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【その場で「考える力」を身に付ける!】整数:大阪星光学院高等学校~全国入試問題解法

問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2数$a,b$の最大公約数を$[a\odot b]$と表すと・・・
$[1\odot 2]+[2\odot 3]+[3\odot 4]+・・・+[100\odot 101]=\Box$であり,
$[1\odot 3]+[2\odot 4]+[3\dot 5]+・・・+[99\odot 101]+[100\odot 102]=\box$である.

大阪星光高校過去問
投稿日:2022.06.05

<関連動画>

東工大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(ab-1)(bc-1)(ca-1)$が$abc$で割り切れる$(a,b,c)$をすべて求めよ.
ただし,$a,b,c$は自然数であり,$1\lt a\lt b\lt c$とする.

1978東工大過去問
この動画を見る 

名古屋大 指数 整数 方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^a=y^b=z^c=xyz$を満たす1でない3つの正の実数の組$(x,y,z)$が、少なくとも1組存在するような自然数の組$(a,b,c)$
$a \leqq b \leqq c$を全て求めよ

出典:2002年名古屋大学 過去問
この動画を見る 

千葉大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
この動画を見る 

横浜市立(医)約数・倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
この動画を見る 

大学入試問題#447「まあ、沼にはまるよね」 昭和医科大学(2021) #方程式の応用

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$(\sqrt{ n^2-9n+19 })^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ。

出典:2021年昭和大学医学部 入試問題
この動画を見る 
PAGE TOP