浜松医大 確率 漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

浜松医大 確率 漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
浜松医科大学過去問題
アリがAを出発し、1秒に一辺歩きGに達すると停止する。
辺上を歩き頂点においてどこにいくかは等確率。
n秒後にGに到達する確率。
*図は動画内参照
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
アリがAを出発し、1秒に一辺歩きGに達すると停止する。
辺上を歩き頂点においてどこにいくかは等確率。
n秒後にGに到達する確率。
*図は動画内参照
投稿日:2018.06.29

<関連動画>

大学入試問題#250 福井大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を0以上の整数とする。
次の2つの条件をみたす関数$f_n(x)$を求めよ。
(ⅰ)$f_0(x)=e^x$
(ⅱ)$f_n(x)=\displaystyle \int_{0}^{x}(n+t)f_{n-1}(t)dt$

出典:2012年福井大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

【高校数学】 数B-61 等差数列とその和④

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
初項$a$,公差$d$,末項$\ell$,項数$n$の等差数列の和を$S_n$とすると
$S_n=①=②$

次の等差数列の和を求めよう.

③初項-10,末項45,項数8

④初項64,公差-5,項数16

⑤$20,14,・・・-58$
この動画を見る 

289 フィボナッチ数列をプログラムする!:100を超えるのは何項目?#shorts

アイキャッチ画像
単元: #情報Ⅰ(高校生)#数列#漸化式#数学(高校生)#プログラミング#プログラムによる動的シミュレーション#数B
指導講師: めいちゃんねる
問題文全文(内容文):
289 フィボナッチ数列をプログラムする!:100を超えるのは何項目?#shorts
【問題文】次のプログラムの実行結果を答えよ。
※プログラムは動画内参照
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 
PAGE TOP