【高校数学】数Ⅲ-76 関数の極限① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-76 関数の極限①

問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to2}(x^2-3x+1)$

②$\displaystyle \lim_{n\to2}\dfrac{x+1}{x^2-x+1}$

③$\displaystyle \lim_{n\to2}\dfrac{x^2-x-2}{x+1}$

④$\displaystyle \lim_{n\to2}\dfrac{2x^2+x-3}{x^2+2x-3}$

⑤$\displaystyle \lim_{n\to2}\dfrac{x^3-1}{x^2-1}$

⑥$\displaystyle \lim_{n\to2}\dfrac{1}{x}\left(\dfrac{2}{x-2}+1\right)$

単元: #関数と極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to2}(x^2-3x+1)$

②$\displaystyle \lim_{n\to2}\dfrac{x+1}{x^2-x+1}$

③$\displaystyle \lim_{n\to2}\dfrac{x^2-x-2}{x+1}$

④$\displaystyle \lim_{n\to2}\dfrac{2x^2+x-3}{x^2+2x-3}$

⑤$\displaystyle \lim_{n\to2}\dfrac{x^3-1}{x^2-1}$

⑥$\displaystyle \lim_{n\to2}\dfrac{1}{x}\left(\dfrac{2}{x-2}+1\right)$

投稿日:2018.03.07

<関連動画>

福田のわかった数学〜高校3年生理系016〜極限(16)関数の極限、無理関数の極限

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(16)
$\lim_{x \to 1}\displaystyle \frac{\sqrt{x+8}-3}{\sqrt{x+3}-2}$ を求めよ。 
この動画を見る 

【いかに定めるか】x → a の場合③:中学からの極限~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#関数と極限#関数の極限
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to a}\dfrac{x^3-a^3}{x^2-a^2}$を求めよ.
この動画を見る 

大学入試問題#589「一度は解いておきたい良問」 奈良女子大学(2004) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_1\times a_2\times・・・\times a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$のとき
$\displaystyle \sum_{n=1}^\infty a_n$を求めよ

出典:2004年奈良女子大学 入試問題
この動画を見る 

【数Ⅲ】【関数と極限】(1)lim tanx°/x(2)lim sin(x-π)/x-π(3)lim (x-π/2)tanx(4)lim sinπx/x-1(5)lim sin(sinx)/sinx

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} \frac{\tan x^{\circ}}{x}$
(2) $\displaystyle \lim_{x \to \pi} \frac{\sin (x - \pi)}{x - \pi}$
(3) $\displaystyle \lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \tan x$
(4) $\displaystyle \lim_{x \to 1} \frac{\sin \pi x}{x-1}$
(5) $\displaystyle \lim_{x \to 0} \frac{\sin (\sin x)}{\sin x}$
(6) $\displaystyle \lim_{x \to \infty} x \sin \frac{1}{2x}$
この動画を見る 

大学入試問題#378「どこまで記述すべきか・・・」 #奈良県立医科大学2015 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\sin\ x-\sin(\tan\ x)}{x-\tan\ x}$

出典:2015年奈良県立医科大学 入試問題
この動画を見る 
PAGE TOP