三角関数の基本問題 - 質問解決D.B.(データベース)

三角関数の基本問題

問題文全文(内容文):
$ \dfrac{1}{\sin10°}-\dfrac{\sqrt3}{\cos10°}$
これを解け.
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{1}{\sin10°}-\dfrac{\sqrt3}{\cos10°}$
これを解け.
投稿日:2022.04.25

<関連動画>

【高校数学】 数Ⅱ-102 三角関数を含む方程式・不等式④

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq \theta \lt 2π$のとき、次の不等式を解こう。

①$\sin (\theta +\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{\sqrt{ 2 }}$

②$\cos(\theta-\displaystyle \frac{π}{6}) \geqq \displaystyle \frac{1}{2}$

③$\tan (\theta+\displaystyle \frac{π}{4}) \gt \sqrt{ 3 }$
この動画を見る 

九州大 良問再投稿 合成公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin 10^{ \circ }$は$8x^3-6x+1=0$の解であることを示し、他の2解も求めよ

出典:1975年九州大学 過去問
この動画を見る 

福田の数学〜東北大学2024年文系第2問〜75°の三角比と図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#方べきの定理と2つの円の関係#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a$, $b$, $d$を正の実数とし、$xy$平面上の点O(0,0), A($a$,0), B($b$,0), D(0,$d$)が次の条件をすべて満たすとする。
$\angle OAD$=15°, $\angle OBD$=75°, AB=6
以下の問いに答えよ。
(1)$\tan 75°$の値を求めよ。
(2)$a$, $b$, $d$の値をそれぞれ求めよ。
(3)2点O, Dを直径の両端とする円をCとする。線分ADとCの交点のうちDと異なるものをPとする。また、線分BDとCの交点のうちDと異なるものをQとする。このとき、方べきの定理AP・AD=$\textrm{AO}^2$, BP・BD=$\textrm{BO}^2$ を示せ。
(4)(3)の点P,Qに対し、積AP・BQの値を求めよ。
この動画を見る 

式変形だけで解くことができますか?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\alpha,\beta$が$\alpha>0°,\beta>0°,\alpha+\beta<180°$かつ$ sin^2\alpha+sin^2\beta=sin^2(\alpha+\beta)$を満たすとき、
$ sin\alpha+sin\beta$の取りうる範囲を求めよ。

京都大過去問
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第1問(2)〜三角不等式の解法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(2)0 \leqq θ \lt 2π$のとき、次の不等式を解こう。
$sin2θ \gt 2cos(θ+\frac{π}{6})+\frac{\sqrt{3}}{2}・・・③$
$a=cosθ,b=sinθ$とおくと、次の不等式$③$は
$\boxed{キ}ab-\boxed{ク}\sqrt{\boxed{ケ}}a+\boxed{コ}b-\sqrt{2}\gt0 ・・・④$
となる。不等式$④$の左辺は
$(\boxed{サ}a+\boxed{シ})(\boxed{ス}b-\sqrt{セ})$
と因数分解できる。これより、不等式$③$の解は
$\frac{π}{\boxed{ソ}} \lt θ \lt \frac{\boxed{タ}}{\boxed{チ}}π$または$\frac{\boxed{ツ}}{\boxed{テ}}π \lt θ \lt\frac{\boxed{ト}}{\boxed{ナ}}π$
と求まる。
この動画を見る 
PAGE TOP