無限等比級数 - 質問解決D.B.(データベース)

無限等比級数

問題文全文(内容文):
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} +\frac{1}{16} +\frac{1}{32} + \cdots =?$
投稿日:2023.01.05

<関連動画>

滋賀大 複素数 数列 漸化式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n,b_n$整数
$(3+2i)^n=a_n+b_ni$
$a_n,b_n$の一般項を求めよ

出典:滋賀大学 過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第3問〜確率と漸化式の融合問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
1つの箱を置ける台と2つの箱A, Bがある。箱Aには赤玉2個、青玉2個が
入っており、箱Bには白玉3個、青玉1個が入っている。台の上に箱Aを置き、
次の操作を繰り返す。
(操作) 台に置かれている箱から玉を1個取り出して色を調べてから箱に戻し、台
に置かれている箱を台から降ろす。取りだした玉が青球であれば箱Bを台
に置き、それ以外の色の玉であれば箱Aを台に置く。
正の整数nに対し、n回目の操作を終えたときに、台に箱Aが置かれている確率
をa_n、箱Bが置かれている確率をb_nとおく。次の問いに答えよ。
(1) 正の整数nに対し、$b_n$と$a_{n+1}$をそれぞれ $a_n$ を用いて表せ。
(2) 正の整数nに対し、$a_n$をnを用いて表せ。
(3) 正の整数nに対し、1回目からn回目までのn回の操作で白玉を1回も取り出
さない確率をnを用いて表せ。
(4)正の整数nに対し、1回目からn回目までのn回の操作で白玉をちょうど1回
だけ取り出す確率をnを用いて表せ。

2022北里大学医学部過去問
この動画を見る 

福田の数学〜中央大学202理工学部第3問〜関数の列と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数$f(x),g(x)$に対し、$s_n(x)=f(x)^n+g(x)^n$とおき、さらに$s_1(x)=x, s_2(x)=x^2+2$が成り立つとする。
(1) $f(x)+g(x)$と$s_3(x)$を求めよ。
(2) $s_{n+2}(x)$を$s_n(x)$と$s_{n+1}(x)$を用いて表せ。
(3) $s_n(x)$の$x=0$における値$s_n(0)$と微分係数$s_n'(0)$を求めよ。
この動画を見る 

一橋大 漸化式&対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
数列$a_n,a_1=5,a_{n+1}=2,a_n+3^n$がある.

(1)$a_n$を求めよ.
(2)$a_n\lt 10^{10}$を満たす最大の$n$を求めよ.
$\log_{10}2=0.3010,\log_{10}3=0.4771$

1998一橋大過去問
この動画を見る 

【等差数列】中学受験・高校受験・大学受験で使える!SPI対策【勉強法】

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数列#数列とその和(等差・等比・階差・Σ)#規則性(周期算・方陣算・数列・日暦算・N進法)#数学(高校生)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
等差数列

例1
5, 8, 11, 14, 17, -...と並んでいる。

(1) 20番目の数はいくつ?

(2)65は何番目の数?

(3)20日までの数を全部たすと いいくつになる?
この動画を見る 
PAGE TOP