大学入試問題#778「ウォリス積分なら一撃」 横浜国立大学(1994) #定積分 - 質問解決D.B.(データベース)

大学入試問題#778「ウォリス積分なら一撃」 横浜国立大学(1994) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^3\theta\ \cos2\theta\ d\theta$

出典:1994年横浜国立大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^3\theta\ \cos2\theta\ d\theta$

出典:1994年横浜国立大学 入試問題
投稿日:2024.03.28

<関連動画>

#前橋工科大学2024#定積分_13#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{1}{2}(1-\cos x)^2 dx$

出典:2024年前橋工科大学
この動画を見る 

大阪大 区分求積法 ヨビノリ病欠 代講ヤス

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \sum_{k=1}^n \displaystyle \frac{[\sqrt{ 2n^2-k^2 }]}{n^2}$

$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2000年大阪大学 過去問
この動画を見る 

#47 数検1級1次 過去問 二項定理

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#微分法と積分法#整式の除法・分数式・二項定理#不定積分・定積分#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$(1+x)^n$を$c_0+c_1x+・・・+c_nx^n$とおく。
$\displaystyle \sum_{k=1}^n(-1)^k\displaystyle \frac{c_k}{k+1}$の値を求めよ。
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(4)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}(4)$座標平面上で放物線$y=x^2$上の点P$(t,t^2)(0 \leqq t \leqq 1)$における接線$y=-(x+1)^2$の二つの共有点の中点をQとする。ただし、共有点が1つの場合は、その共有点をQとする。Qの座標は$(\boxed{ユ}t+\boxed{ヨ}
,\boxed{ラ}t^2+\boxed{リ}t+\boxed{ル})$である。
tが$0 \leqq t \leqq1$の範囲を動くとき線分PQが動いてできる図形の面積は$\frac{\boxed{レ}}{\boxed{ロ}}$である
この動画を見る 

大学入試問題#485「計算ミスに注意」 九州歯科大学(2016) #定積分 視聴者の僚太さんの紹介で投稿しました。

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{3} (3\sqrt{ x^4-6x^2+9 }-4x) dx$

出典:2016年九州歯科大学 入試問題
この動画を見る 
PAGE TOP