大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限 - 質問解決D.B.(データベース)

大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
投稿日:2023.03.02

<関連動画>

極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \displaystyle \lim_{ x \to 1 } \dfrac{\sqrt x -1}{\sqrt[3]{x}-1}$,これを解け.
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ a \gt 0を定数とし、f(x)=x^a\log xとする。以下の問いに答えよ。\hspace{40pt}\\
(1)\lim_{x \to +0}f(x)を求めよ。必要ならば\lim_{s \to \infty}se^{-s}=0が成り立つことは\\
証明なしに用いてよい。\\
(2)曲線y=f(x)の変曲点がx軸上に存在するときのaの値を求めよ。\\
さらにそのときy=f(x)のグラフの概形を描け。\\
(3)t \gt 0に対して、曲線y=f(x)上の点(t,f(t))における接線をlとする。\\
lがy軸の負の部分と交わるための(a,t)の条件を求め、その条件の表す領域を\\
a-t平面上に図示せよ。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 

いくつでしょうか?

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第3問〜確率と数列の極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $n$を自然数とする。1個のさいころを繰り返し投げる実験を行い、繰り返す回数が
$2n+1$回に達するか、5以上の目が2回連続して出た場合に実験を終了する。下の表は
$n=2$の場合の例である。例$\textrm{a}$では、5以上の目が2回連続して出ず、5回で実験を
終了した。例$\textrm{b}$では、5以上の目が2回連続して出たため、3回で実験を終了した。

$\begin{array}{c|ccccc}
& 1回目 & 2回目 & 3回目 & 4回目 & 5回目\\
\hline 例\textrm{a} & ⚃ & ⚅ & ⚀ & ⚁ & ⚀\\
例\textrm{b} & ⚂ & ⚅ & ⚄ \\
\end{array}\hspace{100pt}$

この実験において、$A$を「5以上の目が2回連続して出る」事象、非負の整数$k$に対し
$B_k$を「5未満の目が出た回数がちょうど$k$である」事象とする。一般に、事象Cの
確率を$P(C),C$が起こったときの事象$D$が起こる条件付き確率を$P_C(D)$と表す。

(1)$n=1$のとき、$P(B_1)=\boxed{\ \ サ\ \ }$である。

(2)$n=2$のとき、$P_{B_{2}}(A)=\boxed{\ \ シ\ \ }$である。
以下、$n \geqq 1$とする。

(3)$P_{B_{k}}(A)=1$となる$k$の値の範囲は$0 \leqq k \leqq K_n$と表すことができる。この$K_n$を
$n$の式で表すと$K_n=\boxed{\ \ ス\ \ }$である。

(4)$p_k=P(A \cap B_k)$とおく。$0 \leqq k \leqq K_n$のとき、$p_k$を求めると$p_k=\boxed{\ \ セ\ \ }$である。
また、$S_n=\displaystyle \sum_{k=0}^{K_n}kp_k$ とおくと$\lim_{n \to \infty}S_n=\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 

【高校数学】分数関数の漸近線とグラフの簡単な求め方!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。また,その漸近線を求めよ。
$y=\dfrac{-2x–10}{x+3}$
この動画を見る 
PAGE TOP