大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限 - 質問解決D.B.(データベース)

大学入試問題#466「絶対に知っておくべき解き方」 電気通信大学(2014) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
単元: #大学入試過去問(数学)#三角関数#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{x^2log(x+1)-log\ 2}{x-1}$

出典:2014年電気通信大学 入試問題
投稿日:2023.03.02

<関連動画>

福田の数学〜早稲田大学2022年理工学部第5問〜対数関数の極限と変曲点とグラフの接線

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}\ a \gt 0$を定数とし、
$f(x)=x^a\log x$とする。以下の問いに答えよ。
(1)$\lim_{x \to +0}f(x)$を求めよ。必要ならば$\lim_{s \to \infty}se^{-s}=0$が成り立つことは
証明なしに用いてよい。
(2)曲線$y=f(x)$の変曲点がx軸上に存在するときのaの値を求めよ。
さらにそのとき$y=f(x)$のグラフの概形を描け。
(3)$t \gt 0$に対して、曲線$y=f(x)$上の点(t,f(t))における接線をlとする。
lがy軸の負の部分と交わるための$(a,t)$の条件を求め、その条件の表す領域を
a-t平面上に図示せよ。

2022早稲田大学人間科学部過去問
この動画を見る 

17滋賀県教員採用試験 3番 極限について

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$\sqrt{\sqrt{3+{\sqrt{3+{\sqrt3+・・・}}}}}$の値を求めよ.
この動画を見る 

福田のおもしろ数学130〜合成関数の性質

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)$=$ax$+$b$, $g(x)$=$cx$+$d$ ($a$≠0, $c$≠0)とする。このとき次の条件を満たす関数$h(x)$, $k(x)$を求めよ。
(1)$g(h(x))$=$f(x)$ (2)$k(g(x))$=$f(x)$ 
この動画を見る 

【数Ⅲ】数列の極限:次の無限級数の和を求めよう。Σ[n=1~∞](1/2^n + 1/5^n)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無限級数の和を求めよう。
$\displaystyle \sum_{n=1}^{\infty}\left(\dfrac{1}{2^n}+\dfrac{1}{5^n}\right)$
この動画を見る 

【演習編!】演習で無限等比級数の知識をどう使う?!【数学III】

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
(1)$\displaystyle \sum_{n=1}^\infty \frac{1}{2}(\frac{5}{4})^{n-1}$
(2)$\displaystyle \sum_{n=1}^\infty \frac{4^n-3^{n+1}}{3^{2n}}$
この動画を見る 
PAGE TOP