【高校数学】 数A-1 集合① - 質問解決D.B.(データベース)

【高校数学】  数A-1  集合①

問題文全文(内容文):
◎9以下の自然数を全体集合とする。
$A={2,7,8},B={1,2,4,7,9}$について、次の集合を求めよう。

①$\overline{ A }$
②$\overline{ B }$
③$A \cup B$
④$\overline{ A } \cap \overline{ B }$
⑤$\overline{ A \cup B }$
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎9以下の自然数を全体集合とする。
$A={2,7,8},B={1,2,4,7,9}$について、次の集合を求めよう。

①$\overline{ A }$
②$\overline{ B }$
③$A \cup B$
④$\overline{ A } \cap \overline{ B }$
⑤$\overline{ A \cup B }$
投稿日:2014.04.23

<関連動画>

【高校数学】共通部分と和集合~⋂と⋃の記号のイメージ授けます~ 1-2【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の説明動画です
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
どの人についても、カードの数字が異なる確率は?

(2)
カードの数字が異なる人がいた場合に、カードの数字が同じ人がいる確率は?
この動画を見る 

福田の数学〜東北大学2023年理系第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。

2023東北大学理系過去問
この動画を見る 

【数A】【場合の数と確率】確率の条件から未知数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1つのつぼに赤玉と白玉が合計10個入っている。このつぼから1個の玉を取り出し、それをつぼに戻さずにまた1個の玉を取り出す。このとき、取り出される2個の玉がともに赤玉である確率は7/15であるという。このつぼに初め赤玉は何個入っているか。
この動画を見る 
PAGE TOP