どっちがでかい?対数勝負 昭和(医) - 質問解決D.B.(データベース)

どっちがでかい?対数勝負 昭和(医)

問題文全文(内容文):
$ \log a\sqrt{ab}$ vs $\log_{\sqrt{ab}}b$

$a>1,b<1,a \neq b$とするとき,どちらが大きいか?

昭和(医)過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \log a\sqrt{ab}$ vs $\log_{\sqrt{ab}}b$

$a>1,b<1,a \neq b$とするとき,どちらが大きいか?

昭和(医)過去問
投稿日:2023.02.15

<関連動画>

福田の1.5倍速演習〜合格する重要問題072〜上智大学2019年度理工学部第3問〜ガウス記号で定義された数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\alpha=\log_23$とし、自然数nに対して
$a_n=[n\alpha]$, $b_n=\left[\displaystyle\frac{n\alpha}{\alpha-1}\right]$
とする。ただし、実数xに対して[x]はxを超えない最大の整数を表す。
(1)$a_5=\boxed{\ \ ス\ \ }$である。
(2)$b_3=k$とおくと、不等式$\displaystyle\frac{3^{k+c}}{2^k} \leqq 1 \lt \frac{3^{k+1+c}}{2^{k+1}}$が整数$c=\boxed{\ \ セ\ \ }$で成り立ち、
$b_3=\boxed{\ \ ソ\ \ }$であることがわかる。
(3)$a_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ タ\ \ }$である。
(4)$b_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ チ\ \ }$である。
(5)$a_n \leqq$ 50を満たす自然数nの個数をsとし、$b_n \leqq$ 50を満たす自然数nの個数をtとする。このとき、s+t=$\boxed{\ \ ツ\ \ }$である。

2019上智大学理工学部過去問
この動画を見る 

慶應SFCを目指す仮面浪人女子に数学を教えるよ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学を基礎から解説していきます.
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}} (2)(\textrm{i})$不等式
$\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}$
を満たす自然数$k$は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})7^{35}$は$\boxed{\ \ セ\ \ }$桁の整数である。

2021上智大学理工学部過去問
この動画を見る 

15和歌山県教員採用試験(数学:1 -(7) 対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(7)$

$\log_{10}2=a,\log_{10}3=b$とする.
$\log_{3}32$を$a,b$で表せ.
この動画を見る 

【高校数学】対数①~logとは?対数の基礎~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)

【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。

(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。

(3)log₅125を求めよ。
この動画を見る 
PAGE TOP