【数Ⅲ】【微分とその応用】関数のグラフ3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】関数のグラフ3 ※問題文は概要欄

問題文全文(内容文):
次の関数$f(x)$について、$f'(0)=f''(0)=0$であることを示せ。
また、$f(x)$は$x=0$で極値をとるかどうかを調べよ。
(1) $f(x)=x^4$
(2) $f(x)=x^2\sin x$
チャプター:

0:00 オープニング
0:03 問題概要
0:25 (1)解説
1:40 (2)解説

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数$f(x)$について、$f'(0)=f''(0)=0$であることを示せ。
また、$f(x)$は$x=0$で極値をとるかどうかを調べよ。
(1) $f(x)=x^4$
(2) $f(x)=x^2\sin x$
投稿日:2025.03.05

<関連動画>

【高校数学】数Ⅲ-118 関数の極値③

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値③)
Q.次の極値を求めなさい。

①$f(x)=x+ 2\cos x(0\leqq x\leqq \pi)$

➁$f(x)=\sin x(1+ \cos x)(0\leqq x\leqq 2\pi)$
この動画を見る 

福田の数学〜立教大学2023年理学部第1問(2)〜極値をとる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)関数$f(t)$=$a\cos^3t$+$\cos^2t$が$t$=$\frac{\pi}{4}$で極値をとるとき、$a$=$\boxed{\ \ イ\ \ }$である。
この動画を見る 

福田のわかった数学〜高校3年生理系081〜グラフを描こう(3)対数関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(3)

$y=x(\log x-1)^2$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(1)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)$実数$x$に関する方程式
$2\log(1-x)-\log(5-x)=\log 2$
を解くと$x=\boxed{ア}$である.

立教大学2022年理学部過去問
この動画を見る 

【高校数学】数Ⅲ-108 接線と法線①

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
曲線$y=f(x)$上の点$P(a,f(a))$におけるそれぞれの方程式は、
接線→① $\quad$ 法線→②

次の曲線上の点$P$における接線と法線の方程式を求めよ。

③$y=x^4-x^2, P(1,0)$

④$y=\dfrac{x}{2x+1} ,P\left(1,\dfrac{1}{3}\right)$
この動画を見る 
PAGE TOP