問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}
2022上智大学文系過去問
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}
2022上智大学文系過去問
\begin{eqnarray}
{\large\boxed{1}}\ 1個のさいころを投げる試行を2回繰り返し、\hspace{116pt}\\
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線\hspace{60pt}\\
l:\frac{x}{a}+\frac{y}{b}=1\hspace{176pt}\\
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、\hspace{49pt}\\
三角形OPQの周および内部をD、三角形OPQの面積をSとする。\hspace{45pt}\\
\\
(3)円(x-3)^2+(y-3)^2=5とlが共有点を持たない確率は\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}である。\hspace{6pt}
\end{eqnarray}
2022上智大学文系過去問
投稿日:2022.10.03