【数Ⅱ】【複素数と方程式】剰余の定理と因数定理2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【複素数と方程式】剰余の定理と因数定理2 ※問題文は概要欄

問題文全文(内容文):
多項式P(x)を(x-1)(x+2)で割ると余りが3x-1である。P(x)をx-1およびx-2で割ったときの余りを、それぞれ求めよ。

多項式P(x)をx-2で割ると余りが5, x-3で割ると余りが9である。P(x)を(x-2)(x-3)で割ったときの余りを求めよ。

多項式P(x)をx²-3x+2で割ると余りが-x+4, x²-4x+3で割ると余りが3xである。P(x)をx²-5x+6で割ったときの余りを求めよ。
チャプター:

0:00 オープニング
0:04 問題1の解説
2:21 問題2の解説
5:32 問題3の解説

単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
多項式P(x)を(x-1)(x+2)で割ると余りが3x-1である。P(x)をx-1およびx-2で割ったときの余りを、それぞれ求めよ。

多項式P(x)をx-2で割ると余りが5, x-3で割ると余りが9である。P(x)を(x-2)(x-3)で割ったときの余りを求めよ。

多項式P(x)をx²-3x+2で割ると余りが-x+4, x²-4x+3で割ると余りが3xである。P(x)をx²-5x+6で割ったときの余りを求めよ。
投稿日:2025.02.26

<関連動画>

【数Ⅱ】【複素数と方程式】高次方程式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を解け。
(1)4x³+3x-2=0
(2)2x³-7x²+2=0
(3)(x-1)(x-2)(x-3)=4・3・2
(4)(x²-2x)²-(x²-2x)-6=0
(5)x⁴+x²+1=0
(6)(x²-5x+1)(x²-5x+9)+15=0

1の3乗根のうち、虚数であるものの1つをωとする。次の式の値を求めよ。
(1)ω⁶+ω³+1
(2)ω⁸+ω⁴+1
(3)ω²⁰⁰+ω¹⁰⁰

4次方程式x⁴-3x³+ax²+bx-4=0が1と2を解にもつとき、定数a, bの値と他の解を求めよ。
この動画を見る 

複素数 広島大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.

1966広島大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題098〜早稲田大学2020年度商学部第1問(1)〜積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)m, nを正の整数とする。n次関数f(x)が、次の等式を満たしているとき、f(x)=$\boxed{\ \ ア\ \ }$である。
$\displaystyle\int_0^x(x-t)^{m-1}f(t)dt$=$\left\{f(x)\right\}^m$

2020早稲田大学商学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(5)切り取られる弦の長さと中点(応用1)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2-4x+2y-4=0$ $\cdots$①が直線$x+2y+k=0$ $\cdots$②
から切り取る弦の長さが4であるとき、定数$k$の値を求めよ。

${\Large\boxed{2}}$ 直線$\ell:y=2x+a$ が放物線$C:y=x^2$ によって切り取られる弦
の長さが10となるように定数$a$の値を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-37 解と係数の関係④

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。

①$6.-3$

②$2+3i,2-3i$

◎和と積が次のようになる2数を求めよう。

③和が-5,積が3

④和が2,積が4
この動画を見る 
PAGE TOP