問題文全文(内容文):
$\boxed{4}$
$k$は実数とする。
曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との
共有点の偶数を$f(k)$で表す。次の問いに答えよ。
ただし、必要ならば自然数$n$に対し
$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは
説明なしに用いてもよい。
(1)$k$が実数全体を動くとき、
$f(k)$の最大値の最小値を求めよ。
(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。
(3)$\alpha$を正の実数とする。
曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる
部分の面積を$\alpha$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
$\boxed{4}$
$k$は実数とする。
曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との
共有点の偶数を$f(k)$で表す。次の問いに答えよ。
ただし、必要ならば自然数$n$に対し
$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは
説明なしに用いてもよい。
(1)$k$が実数全体を動くとき、
$f(k)$の最大値の最小値を求めよ。
(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。
(3)$\alpha$を正の実数とする。
曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる
部分の面積を$\alpha$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$は実数とする。
曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との
共有点の偶数を$f(k)$で表す。次の問いに答えよ。
ただし、必要ならば自然数$n$に対し
$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは
説明なしに用いてもよい。
(1)$k$が実数全体を動くとき、
$f(k)$の最大値の最小値を求めよ。
(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。
(3)$\alpha$を正の実数とする。
曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる
部分の面積を$\alpha$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
$\boxed{4}$
$k$は実数とする。
曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との
共有点の偶数を$f(k)$で表す。次の問いに答えよ。
ただし、必要ならば自然数$n$に対し
$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは
説明なしに用いてもよい。
(1)$k$が実数全体を動くとき、
$f(k)$の最大値の最小値を求めよ。
(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。
(3)$\alpha$を正の実数とする。
曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる
部分の面積を$\alpha$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
投稿日:2025.07.23





