積分法の応用
![](https://kaiketsu-db.net/wp-content/uploads/2021/11/112-book-morph-outline.gif)
【数Ⅲ】【積分とその応用】体積の2等分 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/04aafb4cdfefb73f33d22473f23c8b21.jpg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
この動画を見る
a>0とする。曲線y=a²-x²(-a≦x≦a)とx軸で囲まれた部分を、軸の周りに1回転させてできる立体の体積を、曲線y=kx²をy軸の周りに1回転させてできる曲面で2等分したい。定数kの値を求めよ。
【数Ⅲ】【積分とその応用】回転体の体積が最大になるとき ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/173e799e5e18de2c914021be9c1fa2c7.jpg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
0≦t≦π/2とする。曲線y=sinxおよび3直線x=t、x=2t, y=0で囲まれた部分を、x軸の周りに1回転させてできる立体の体積をV(t)とする。V(t)が最大になるの値をαとするとき、cosαを求めよ。
この動画を見る
0≦t≦π/2とする。曲線y=sinxおよび3直線x=t、x=2t, y=0で囲まれた部分を、x軸の周りに1回転させてできる立体の体積をV(t)とする。V(t)が最大になるの値をαとするとき、cosαを求めよ。
【数Ⅲ】【積分とその応用】媒介変数表示の回転体の体積 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/226fe4f70ec8ba856c85517a9db2060e.jpeg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線x=tanθ、y=cos2θ(-π/4≦θ≦π/4)とx軸で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
この動画を見る
曲線x=tanθ、y=cos2θ(-π/4≦θ≦π/4)とx軸で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】回転軸をまたぐ回転体の体積 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/fd39faded34c1f7de25ad38869b0e163.jpeg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
この動画を見る
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)y=2-x²、y=x
(2)y=sinx、y=sin2x(π/3≦x≦π)
【数Ⅲ】【積分とその応用】y=1周りの回転体の体積 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/60ad27b621ebfc769ea9a027c2265d15.jpg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、直線y=1の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=2\sin x$ $(0≦x≦π)$、$y=1$
(2)$x=\sqrt{x}$、$x=0$、$y=1 $
この動画を見る
次の曲線や直線で囲まれた部分を、直線y=1の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=2\sin x$ $(0≦x≦π)$、$y=1$
(2)$x=\sqrt{x}$、$x=0$、$y=1 $
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積3 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/1720c9bac8fd00a63ce37f296037b8b2.jpg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
y=log x、原点を通るこの曲線の接線、およびx軸で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ
この動画を見る
y=log x、原点を通るこの曲線の接線、およびx軸で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積2 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/5b48ce9deccc7c1a246b4080d67e9a2d.jpg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
この動画を見る
曲線y=cosx(0≦x≦π)とy軸、および直線y=−1で囲まれた部分を、y軸の周りに1回転 させてできる立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】y軸周りの回転体の体積1 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/e7ce3f0542f5b1bcfa25202cd0bcd0c1.jpg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
この動画を見る
次の曲線や直線で囲まれた部分を、y軸の周りに1回転させてできる立体の体積Vを求めよ。
(1)$y=x^2$, $x+\sqrt{y}=2$, $x=0$
(2)$y=x^2-4x+5$, $y=2x$
【数Ⅲ】【積分とその応用】x軸周りの回転体の体積 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/ed1a248ed4b21155301df429b9c7256b.jpeg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$
(2)$y=x^2+3x-1$, $y=-x^2-x-1$
この動画を見る
次の曲線や直線で囲まれた部分を、x軸の周りに1回転させてできる立体の体積Vを求めよ。
(1) $y=\dfrac{1}{\sqrt{1+x^2}}$, $y=\dfrac{1}{\sqrt{2}}$
(2)$y=x^2+3x-1$, $y=-x^2-x-1$
【数Ⅲ】【積分とその応用】断面積の図形の体積2 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/878e4b2ef6cfedbbed1317e74d891a91.jpeg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
この動画を見る
底面の半径が2、高さが4の直円柱がある。この底面の直径ABを含み、底面と60°の傾きをなす平面で、直円柱を2つの部分に分けるとき、小さい方の立体の体積Vを求めよ。
【数Ⅲ】【積分とその応用】断面積の図形の体積1 ※問題文は概要欄
![アイキャッチ画像](https://kaiketsu-db.net/wp-content/uploads/2024/12/da9ba52e5497ee9bf818f79563655446.jpeg)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学Ⅲ#中高教材#積分法の応用
指導講師:
理数個別チャンネル
問題文全文(内容文):
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。
この動画を見る
座標平面上の2点P(x,0)、Q(x, sinx)結ぶ線分を1辺とし、この平面に垂直な正方形を作る。Pが原点OからC(π,0)まで動くとき、この正方形が通過してできる立体の体積Vを求めよ。