6年算数D-支援
【受験算数】変化のグラフ:⑧しきりに穴がある
単元:
#算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
縦10cm、横21cm、高さ25cmの直方体の容器が図のように、2枚の板で左から6cm、さらに 9cmのところで、ア、イ、ウに垂直に区切られ ています。左の板には下から8cm、右の板には下から6cmのところにそれぞれ穴があいています。また、イの底には水が入っていれば、毎秒 2㎤で水が出ていく仕掛けの穴があいていま す。いま、アのところに毎秒5㎤で水を入れはじめたとします。ただし、容器、板の厚さは考えずに、板の穴はその位置まで達した水がとどまることなく、すべて流れ出るのに十分な大きさの穴とします。次の問いに答えなさい。
(1) アのところの深さが5㎝になるのは、水を入れはじめてから何秒後ですか。
(2) 3分36秒後のイのところの深さは、何㎝ですか。
(3) ウのところの深さが1cmになるのは、何分何秒後ですか。
(4) 水を入れはじめて5分16秒後に水を入れるのをやめ、3分間止めてからふたたび水を入れはじめました。ふたたび水を入れはじめてから、さらに2分後、ア、 イ、ウの容器には、それぞれ何cmの深さまで水が入っていますか。
大問2
縦10cm、横20cm、高さ18cmの直方体の容器が図のように、2枚の板で左から6cm、さらに 8cmのところで、ア、イ、ウに垂直に区切られ ています。左の板には下から10cm、右の板には下から8cmのところにそれぞれ穴があいています。また、イの底には水が入っていれば、毎秒 2㎤で水が出ていく仕掛けの穴があいていま す。いま、アのところに毎秒6㎤で水を入れはじめたとします。ただし、容器、板の厚さは考えずに、板の穴はその位置まで達した水がとどまることなく、すべて流れ出るのに十分な大きさの穴とします。次の問いに答えなさい。
(1) アのところの深さが6㎝になるのは、水を入れはじめてから何秒後ですか。
(2) 2分40秒後のイのところの深さは、何㎝ですか。
(3) ウのところの深さが1cmになるのは、何分何秒後ですか。
(4) 水を入れはじめて4分50秒後に水を入れるのをやめ、4分間止めてからふたたび水を入れはじめました。ふたたび水を入れはじめてから、さらに3分後、ア、 イ、ウの容器には、それぞれ何cmの深さまで水が入っていますか。
この動画を見る
大問1
縦10cm、横21cm、高さ25cmの直方体の容器が図のように、2枚の板で左から6cm、さらに 9cmのところで、ア、イ、ウに垂直に区切られ ています。左の板には下から8cm、右の板には下から6cmのところにそれぞれ穴があいています。また、イの底には水が入っていれば、毎秒 2㎤で水が出ていく仕掛けの穴があいていま す。いま、アのところに毎秒5㎤で水を入れはじめたとします。ただし、容器、板の厚さは考えずに、板の穴はその位置まで達した水がとどまることなく、すべて流れ出るのに十分な大きさの穴とします。次の問いに答えなさい。
(1) アのところの深さが5㎝になるのは、水を入れはじめてから何秒後ですか。
(2) 3分36秒後のイのところの深さは、何㎝ですか。
(3) ウのところの深さが1cmになるのは、何分何秒後ですか。
(4) 水を入れはじめて5分16秒後に水を入れるのをやめ、3分間止めてからふたたび水を入れはじめました。ふたたび水を入れはじめてから、さらに2分後、ア、 イ、ウの容器には、それぞれ何cmの深さまで水が入っていますか。
大問2
縦10cm、横20cm、高さ18cmの直方体の容器が図のように、2枚の板で左から6cm、さらに 8cmのところで、ア、イ、ウに垂直に区切られ ています。左の板には下から10cm、右の板には下から8cmのところにそれぞれ穴があいています。また、イの底には水が入っていれば、毎秒 2㎤で水が出ていく仕掛けの穴があいていま す。いま、アのところに毎秒6㎤で水を入れはじめたとします。ただし、容器、板の厚さは考えずに、板の穴はその位置まで達した水がとどまることなく、すべて流れ出るのに十分な大きさの穴とします。次の問いに答えなさい。
(1) アのところの深さが6㎝になるのは、水を入れはじめてから何秒後ですか。
(2) 2分40秒後のイのところの深さは、何㎝ですか。
(3) ウのところの深さが1cmになるのは、何分何秒後ですか。
(4) 水を入れはじめて4分50秒後に水を入れるのをやめ、4分間止めてからふたたび水を入れはじめました。ふたたび水を入れはじめてから、さらに3分後、ア、 イ、ウの容器には、それぞれ何cmの深さまで水が入っていますか。
【受験算数】変化のグラフ:⑦途中で水量がかわる
単元:
#算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
下の図のような直方体の水そうに、底面と垂直になるように長方形のしきり板 を2枚入れて底面を3つの長方形に分け、蛇口に近い方からA、B、Cとします。 蛇口からAの部分に、一定の割合で静かに水を入れ始め、途中から入れる水の量を 3/2倍に変えて水そうがいっぱいになるまで水を入れました。このとき、底面がA の部分の水面の高さと、水を入れ始めてからの時間の関係は、下の図2のグラフのようになりました。
次の□に当てはまる数を求めなさい。ただし、しきり板の厚さは考えないも のとします。
(1) 図1の「あ」に当てはまる数は□です。
(2) 蛇口から入れる水の量を3/2倍に変えたのは、水を入れ始めてから□分後です。
(3) 水そうがいっぱいになるのは、水を入れ始めてから□分□秒後です。
大問2
下の図のような直方体の水そうに、底面と垂直になるように長方形のしきり板 を2枚入れて底面を3つの長方形に分け、蛇口に近い方からA、B、Cとします。 蛇口からAの部分に、一定の割合で静かに水を入れ始め、途中から入れる水の量を 5/3倍に変えて水そうがいっぱいになるまで水を入れました。このとき、底面がA の部分の水面の高さと、水を入れ始めてからの時間の関係は、下の図2のグラフのようになりました。
次の□に当てはまる数を求めなさい。ただし、しきり板の厚さは考えないも のとします。
(1) 図1の「あ」に当てはまる数は□です。
(2) 蛇口から入れる水の量を5/3倍に変えたのは、水を入れ始めてから□分後です。
(3) 水そうがいっぱいになるのは、水を入れ始めてから□分□秒後です。
この動画を見る
大問1
下の図のような直方体の水そうに、底面と垂直になるように長方形のしきり板 を2枚入れて底面を3つの長方形に分け、蛇口に近い方からA、B、Cとします。 蛇口からAの部分に、一定の割合で静かに水を入れ始め、途中から入れる水の量を 3/2倍に変えて水そうがいっぱいになるまで水を入れました。このとき、底面がA の部分の水面の高さと、水を入れ始めてからの時間の関係は、下の図2のグラフのようになりました。
次の□に当てはまる数を求めなさい。ただし、しきり板の厚さは考えないも のとします。
(1) 図1の「あ」に当てはまる数は□です。
(2) 蛇口から入れる水の量を3/2倍に変えたのは、水を入れ始めてから□分後です。
(3) 水そうがいっぱいになるのは、水を入れ始めてから□分□秒後です。
大問2
下の図のような直方体の水そうに、底面と垂直になるように長方形のしきり板 を2枚入れて底面を3つの長方形に分け、蛇口に近い方からA、B、Cとします。 蛇口からAの部分に、一定の割合で静かに水を入れ始め、途中から入れる水の量を 5/3倍に変えて水そうがいっぱいになるまで水を入れました。このとき、底面がA の部分の水面の高さと、水を入れ始めてからの時間の関係は、下の図2のグラフのようになりました。
次の□に当てはまる数を求めなさい。ただし、しきり板の厚さは考えないも のとします。
(1) 図1の「あ」に当てはまる数は□です。
(2) 蛇口から入れる水の量を5/3倍に変えたのは、水を入れ始めてから□分後です。
(3) 水そうがいっぱいになるのは、水を入れ始めてから□分□秒後です。
【受験算数】拡大・縮小:⑧2つの台形の面積比
単元:
#算数(中学受験)#平面図形#相似と相似を利用した問題
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
図のような台形ABCDがあり、PRとBCは平行です。また、PRの中点Qは、対角線ACとPRの交点です。このとき、台形ADRQと台形 PQCBの面積比を求めなさい。
大問2
図のような台形ABCDがあり、PRとBCは平行です。また、PRの中点Qは、対角線ACとPRの交点です。このとき、台形ADRQと台形 PQCBの面積比を求めなさい。
この動画を見る
大問1
図のような台形ABCDがあり、PRとBCは平行です。また、PRの中点Qは、対角線ACとPRの交点です。このとき、台形ADRQと台形 PQCBの面積比を求めなさい。
大問2
図のような台形ABCDがあり、PRとBCは平行です。また、PRの中点Qは、対角線ACとPRの交点です。このとき、台形ADRQと台形 PQCBの面積比を求めなさい。
【受験算数】拡大・縮小:⑧正方形で作る図形
単元:
#算数(中学受験)#平面図形#相似と相似を利用した問題
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
1辺の長さが12cmの正方形を図のように6つならべました。それに図のように4本の直線を引きました。このとき次の問いに答えなさい。
(1) 三角形DEFの面積を求めなさい。
(2) 三角形BGFの面積を求めなさい。
大問2
1辺の長さが12cmの正方形を図のように6つならべました。それに図のように5本の直線を引きました。このとき次の問いに答えなさい。
(1) 三角形DEFの面積を求めなさい。
(2) 三角形BGFの面積を求めなさい。
この動画を見る
大問1
1辺の長さが12cmの正方形を図のように6つならべました。それに図のように4本の直線を引きました。このとき次の問いに答えなさい。
(1) 三角形DEFの面積を求めなさい。
(2) 三角形BGFの面積を求めなさい。
大問2
1辺の長さが12cmの正方形を図のように6つならべました。それに図のように5本の直線を引きました。このとき次の問いに答えなさい。
(1) 三角形DEFの面積を求めなさい。
(2) 三角形BGFの面積を求めなさい。
【受験算数】拡大・縮小:⑦平行線と相似4
単元:
#算数(中学受験)#平面図形#相似と相似を利用した問題
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
右の図の三角形ABCにおいて、AB=12cm, AC=10cmです。AB、AC上に点D、Eをそれぞれ AD=7.5cm、AE=6cmとなるようにとり、EからCDに平行な線を引き、ABとの交点をGとし、 BEとCDの交点をFとします。次の問いに答えなさい。
(1) DGの長さを求めなさい。
(2) 三角形BCFの面積は、三角形CEFの面積 の何倍ですか。
(3) 三角形ABCの面積は、三角形CEFの面積の何倍ですか。
大問2
右の図の三角形ABCにおいて、AB=10cm, AC=8です。AB、AC上に点D、Eをそれぞれ AD=6.4cm、 AE=5cmとなるようにとり、EからCDに平行な線を引き、ABとの交点をGとし、 BEとCDの交点をFとします。次の問いに答えなさい。
(1) DGの長さを求めなさい。
(2) 三角形BCFの面積は、三角形CEFの面積 の何倍ですか。
(3) 三角形ABCの面積は、三角形CEFの面積の何倍ですか。
この動画を見る
大問1
右の図の三角形ABCにおいて、AB=12cm, AC=10cmです。AB、AC上に点D、Eをそれぞれ AD=7.5cm、AE=6cmとなるようにとり、EからCDに平行な線を引き、ABとの交点をGとし、 BEとCDの交点をFとします。次の問いに答えなさい。
(1) DGの長さを求めなさい。
(2) 三角形BCFの面積は、三角形CEFの面積 の何倍ですか。
(3) 三角形ABCの面積は、三角形CEFの面積の何倍ですか。
大問2
右の図の三角形ABCにおいて、AB=10cm, AC=8です。AB、AC上に点D、Eをそれぞれ AD=6.4cm、 AE=5cmとなるようにとり、EからCDに平行な線を引き、ABとの交点をGとし、 BEとCDの交点をFとします。次の問いに答えなさい。
(1) DGの長さを求めなさい。
(2) 三角形BCFの面積は、三角形CEFの面積 の何倍ですか。
(3) 三角形ABCの面積は、三角形CEFの面積の何倍ですか。
【受験算数】拡大・縮小:⑦平行線と相似3
単元:
#算数(中学受験)#平面図形#相似と相似を利用した問題
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
図のような平行四辺形ABCDで、E、F はADの3等分点、G、H、IはBCの4等分点です。三角形EFPの面積は平行四辺形 ABCDの面積の何倍ですか。
大問2
図のような平行四辺形ABCDで、E、F、GはADの4等分点、H、I、J、KはBCの5等分点です。三角形PEGの面積は平行四辺形ABCDの面積の何倍ですか。
この動画を見る
大問1
図のような平行四辺形ABCDで、E、F はADの3等分点、G、H、IはBCの4等分点です。三角形EFPの面積は平行四辺形 ABCDの面積の何倍ですか。
大問2
図のような平行四辺形ABCDで、E、F、GはADの4等分点、H、I、J、KはBCの5等分点です。三角形PEGの面積は平行四辺形ABCDの面積の何倍ですか。
【受験算数】小数・分数:⑧大きさ比べ
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他#約数・倍数を利用する問題
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
分数を小数で表し、小数第3位を四捨五入したとき、0.04となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が450となる既約分数(約分できない分数)はCとDです。A、B、C、Dにあてはまる数を書きなさい。
大問2
分数を小数で表し、小数第3位を四捨五入したとき、0.03となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が56となる既約分数(約分できない分数)はCとDとEです。 A、B、C、D、Eにあてはまる数を書きなさい。
この動画を見る
大問1
分数を小数で表し、小数第3位を四捨五入したとき、0.04となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が450となる既約分数(約分できない分数)はCとDです。A、B、C、Dにあてはまる数を書きなさい。
大問2
分数を小数で表し、小数第3位を四捨五入したとき、0.03となるものはたくさんあります。そのうちで分子が1となるものを考えるとき、最も小さな分数は(1/A)で、 最も大きいものは(1/B)です。
また、分母と分子の和が56となる既約分数(約分できない分数)はCとDとEです。 A、B、C、D、Eにあてはまる数を書きなさい。
【受験算数】小数・分数:⑧単位分数の和
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#数の性質その他
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
この動画を見る
大問1
今から何千年も前のエジプトの人々が、分数を分母の異なる単位分数の和で表した記録がたくさん発見されています。(単位分数とは$\displaystyle \frac{1}{2}、\frac{1}{3}、\frac{1}{4}…$のように分子が1の分数をいいます。)
$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20} \frac{3}{8}=\frac{1}{3}+\frac{1}{24} \frac{8}{9}=\frac{1}{2}+\frac{1}{3}+\frac{1}{18}$ のようなものです。
このような表し方として、次のような方法が考えられます。たとえば$\displaystyle \frac{4}{5}$について 考えると、$\displaystyle \frac{4}{5}$は$\displaystyle \frac{1}{2}$より大きいのでまず$\displaystyle \frac{1}{2}$をとると、$\displaystyle \frac{4}{5}-\frac{1}{2}=\frac{3}{10}、\frac{3}{10}$から$\displaystyle \frac{1}{3}$はとれないので$\displaystyle \frac{1}{4}$をとると、$\displaystyle \frac{3}{10}-\frac{1}{4}=\frac{1}{20}$、したがって$\displaystyle \frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$と
できます。
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{3}{4}$
(2) $\displaystyle \frac{4}{7}$
(3) $\displaystyle \frac{11}{35}$
大問2
この方法で次の分数を単位分数の和で表しなさい。
(1) $\displaystyle \frac{2}{7}$
(2) $\displaystyle \frac{11}{12}$
(3) $\displaystyle \frac{5}{13}$
【受験算数】小数・分数:⑦循環小数応用
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算#規則性(周期算・方陣算・数列・日暦算・N進法)
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
受験算数の森
問題文全文(内容文):
大問1
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.36363636…
② 0.040740740740…
③ 0.481818181
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{1}{9}+\frac{23}{99}$
② $\displaystyle \frac{2}{90}+\frac{34}{99}$
(3)$\displaystyle \frac{150}{1111}$を小数て表したとき、小数第30位の数は何ですか。
大問2
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.25252525…
② 0.518518518…
③ 0.216161616…
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{2}{9}+\frac{35}{99}$
② $\displaystyle \frac{5}{90}+\frac{21}{999}$
(3) $\displaystyle \frac{13}{37}$を小数で表したとき、小数第二位の数は何ですか。
この動画を見る
大問1
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.36363636…
② 0.040740740740…
③ 0.481818181
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{1}{9}+\frac{23}{99}$
② $\displaystyle \frac{2}{90}+\frac{34}{99}$
(3)$\displaystyle \frac{150}{1111}$を小数て表したとき、小数第30位の数は何ですか。
大問2
$\displaystyle \frac{1}{9}=(1÷9)=0.1111…、\frac{1}{99}=(1÷99)=0.010101…、\frac{1}{999} =(1÷999)=0.001001001…$です。次の問いに答えなさい。
(1) 次の小数を分数で表しなさい。
① 0.25252525…
② 0.518518518…
③ 0.216161616…
(2) 次の計算の結果を小数で表しなさい。
① $\displaystyle \frac{2}{9}+\frac{35}{99}$
② $\displaystyle \frac{5}{90}+\frac{21}{999}$
(3) $\displaystyle \frac{13}{37}$を小数で表したとき、小数第二位の数は何ですか。
【小6算数手元解説】9段積み上げたときの見えない立方体は何個?【問題文は概要欄】
単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
下図のように、一辺が1㎝の立方体を机の上に積み重ねることにします。これについて、次の問いに答えなさい。
(1)5段に積み重ねたときの表面積を求めなさい。
(2)6段に積み重ねたときの体積を求めなさい。
(3)9段に積み重ねたとき、上からも横からも見えない立方体は、4段目には1個5段目には3個あります。このような立方体は全部で何個ありますか。
この動画を見る
下図のように、一辺が1㎝の立方体を机の上に積み重ねることにします。これについて、次の問いに答えなさい。
(1)5段に積み重ねたときの表面積を求めなさい。
(2)6段に積み重ねたときの体積を求めなさい。
(3)9段に積み重ねたとき、上からも横からも見えない立方体は、4段目には1個5段目には3個あります。このような立方体は全部で何個ありますか。
【小6算数手元解説】中空方陣(基本と応用)【問題文は概要欄】
単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
中空方陣(基本)
おはじきを外側の一辺の数が10個、はば3列の中空方陣に並べたいと思います。おはじきは何個いりますか。
中空方陣(応用)
1.赤色のおはじきを使って、5列の中空方陣を作りました。次に、青色のおはじきを使って、この方陣の中空部をうめましたが、まだ青色のおはじきが51個残っていたので、方陣の外側のまわりを1列で囲もうとしたら、33個不足しました。赤色と青色とではどちらが何個多いですか。
この動画を見る
中空方陣(基本)
おはじきを外側の一辺の数が10個、はば3列の中空方陣に並べたいと思います。おはじきは何個いりますか。
中空方陣(応用)
1.赤色のおはじきを使って、5列の中空方陣を作りました。次に、青色のおはじきを使って、この方陣の中空部をうめましたが、まだ青色のおはじきが51個残っていたので、方陣の外側のまわりを1列で囲もうとしたら、33個不足しました。赤色と青色とではどちらが何個多いですか。
【小6算数手元解説】切るのに8分そして2分休む【問題文は概要欄】
単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
長さ3mの木材を端から20cmと10cmの長さに交互に切り取りました。1回切るのに8分かかり、1回切ると2分間ずつ休むことにします。全部切り終わるのに何分かかりますか。
この動画を見る
長さ3mの木材を端から20cmと10cmの長さに交互に切り取りました。1回切るのに8分かかり、1回切ると2分間ずつ休むことにします。全部切り終わるのに何分かかりますか。
【小6算数手元解説】赤・青・黄リングを順につなぐ【問題文は概要欄】
単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)#文章題#和差算・植木算・分配算・倍数算・年齢算・相当算・つるかめ算
教材:
#SPX#中学受験教材#6年算数D-支援
指導講師:
理数個別チャンネル
問題文全文(内容文):
下図のような、同じ大きさの赤、青、黄のリングをつなぎます。
(1)赤、青、黄の3つのリングをつなぐと長さは何cmですか。
(2)赤→青→黄→赤→青→・・・の順にリングをつないでいって、長さ194cmのくさりを作りたいと思います。この時、最後につなぐリングの色は何色ですか
(3)赤→青→黄→赤→青→・・・の順にリングをつないで、黄を13個使ったときにもっとも長くなるくさりの長さは何cmですか。
この動画を見る
下図のような、同じ大きさの赤、青、黄のリングをつなぎます。
(1)赤、青、黄の3つのリングをつなぐと長さは何cmですか。
(2)赤→青→黄→赤→青→・・・の順にリングをつないでいって、長さ194cmのくさりを作りたいと思います。この時、最後につなぐリングの色は何色ですか
(3)赤→青→黄→赤→青→・・・の順にリングをつないで、黄を13個使ったときにもっとも長くなるくさりの長さは何cmですか。