【楽しい授業動画】あきとんとん
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【高校数学】2次関数~対称移動~ 2-3【数学Ⅰ】
テストで点数を取りたい方必見~過去問分析の仕方~
【高校数学】2次関数の平行移動例題~基礎問題3選~ 2-2.5【数学Ⅰ】
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか
-----------------
2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ
-----------------
3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
この動画を見る
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか
-----------------
2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ
-----------------
3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
【数学】多くの人が間違える時速の問題
【高校数学】平方完成の裏技~誰でもできるようになる~【数学Ⅰ】
【高校数学】2次関数のグラフ~放物線を理解しよう~ 2-2【数学Ⅰ】
【高校数学】2次関数~どこよりも易しく~ 2-1【数学Ⅰ】
【高校数学】背理法例題演習~基礎的な2題~ 1-19.5【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) $\sqrt{6}$が無理数であることを用いて、$1+\sqrt{6}$が、無理数であることを証明せよ
(2) 三角形の内角のうち、少なくとも1つは$60°$以上であることを証明せよ
この動画を見る
(1) $\sqrt{6}$が無理数であることを用いて、$1+\sqrt{6}$が、無理数であることを証明せよ
(2) 三角形の内角のうち、少なくとも1つは$60°$以上であることを証明せよ
【数学】√36の平方根は?~意外と解けない人が多い~
【数学】40人のグループに同じ誕生日の2人組がいる確率
【高校数学】背理法~証明の流れを理解しましょう~ 1-19【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{ 2 }$は無理数であることを証明せよ
この動画を見る
$\sqrt{ 2 }$は無理数であることを証明せよ
【高校数学】原因の確率~病原菌の問題~ 2-9【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
この動画を見る
ある病原菌の検査試薬は、病原菌に感染しているのに誤って陰性と判断する確率が
1%, 「感染していないのに誤って陽性と判断する確率が2%である。全体の1%がこの
病原菌に感染している集団から1つの個体を取り出すとき、陽性だったのに、実際
には病原菌に感染していない確率を求めよ。
【高校数学】原因の確率~不良品の確率など2題~ 2-9【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率
-----------------
2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
この動画を見る
1⃣
ある製品を製造する工場A、Bがあり、Aの製品には3%、Bの製品には4%の不良品が
含まれている。
Aの製品とBの製品を、4:5の割合で混ぜた大量の製品の中から1個を取り出すとき、
次の確率を求めよ。
(a) それが不良品である確率
(b) 不良品であったときに、それがAの製品である確率
-----------------
2⃣
箱Aには白玉4個と赤玉5個、箱Bには白玉3個と赤玉2個と青玉7個が入っている。
まず、任意に1つの箱を選び、次にその箱の中から玉を1個取り出すものとする。
取り出された玉の色が白であったとき、それが箱Bから取り出された確率を求めよ。
【英語】英語で点数がとれない人の勘違い
【高校数学】命題と証明の例題~できなやばい問題~ 1-18.5【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x, y$は実数、$n$は整数とする。次の命題を証明せよ。
(a) $x^3 \neq 8 \Rightarrow x \neq 2$
(b) $x + y \gt 7 \Rightarrow \lceil x \gt 4 または y \gt 3 \rfloor$
(c) $n^2が7の倍数でないならば、nは7の倍数でない$
-----------------
2⃣
$\lceil m^2 + n^2 が奇数ならば、m,nのうち一方は奇数であり、他方は偶数である。\rfloor$
という命題を証明せよ
この動画を見る
1⃣
$x, y$は実数、$n$は整数とする。次の命題を証明せよ。
(a) $x^3 \neq 8 \Rightarrow x \neq 2$
(b) $x + y \gt 7 \Rightarrow \lceil x \gt 4 または y \gt 3 \rfloor$
(c) $n^2が7の倍数でないならば、nは7の倍数でない$
-----------------
2⃣
$\lceil m^2 + n^2 が奇数ならば、m,nのうち一方は奇数であり、他方は偶数である。\rfloor$
という命題を証明せよ
【高校数学】命題と証明~基礎固めをしっかりと~ 1-18【数学Ⅰ】
【数学】数学的に一筆書きのパターンを求めようぜ
【高校数学】条件付き確率例題~組合せを使おう~ 2-8.5【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
この動画を見る
袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。
まず、Aから2個を取り出して、Bに入れ、次にBから2個を取り出してAに戻す。
このとき、袋Aの白玉の個数が初めより増加する確率を求めよ。
【高校数学】条件付き確率例題~標準問題解いてこ~ 2-8.5【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
1つのつぼに赤玉と白玉が合計10個入っている。
このつぼから1個の玉を取り出し、それをつぼへ戻さずにまた1個の玉を取り出す。
このとき、取り出される2個の玉がともに赤玉である確率は$\displaystyle \frac{7}{15}$あるという。
このつぼに初め赤玉は何個入っているか。
-----------------
2⃣
20本のくじの中に当たりが5本ある。
このくじから1本ずつ順に、引いたくじはもとに戻さずに2本を引いたら、2本の中に
当たりくじがあることがわかった。
このとき、1本目のくじが当たりくじである確率を求めよ。
この動画を見る
1⃣
1つのつぼに赤玉と白玉が合計10個入っている。
このつぼから1個の玉を取り出し、それをつぼへ戻さずにまた1個の玉を取り出す。
このとき、取り出される2個の玉がともに赤玉である確率は$\displaystyle \frac{7}{15}$あるという。
このつぼに初め赤玉は何個入っているか。
-----------------
2⃣
20本のくじの中に当たりが5本ある。
このくじから1本ずつ順に、引いたくじはもとに戻さずに2本を引いたら、2本の中に
当たりくじがあることがわかった。
このとき、1本目のくじが当たりくじである確率を求めよ。
【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率
-----------------
2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。
-----------------
3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率
-----------------
2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。
-----------------
3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
【高校数学】確率の乗法定理~改めて確認しよう~ 2-8【数学A】
単元:
#数A#場合の数と確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
当たりくじを3本含む10本のくじの中から引いたくじをもとに戻さないで、
1本ずつ2回続けてくじを引く。2本とも当たる確率を求めよ。
この動画を見る
当たりくじを3本含む10本のくじの中から引いたくじをもとに戻さないで、
1本ずつ2回続けてくじを引く。2本とも当たる確率を求めよ。
【高校数学】条件付き確率~基本の考えと使い方~ 2-7【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。
選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
この動画を見る
ある高校の1年生の男女比は8:7であり、メガネをかけた女子生徒は1年生全体の2 割であるという。
女子生徒の1人を選び出したとき、メガネをかけている確率を求めよ。
選び出された1人の生徒が女子であるという事象をA、メガネをかけているという事象をBとする。
【高校数学】反復試行の確率例題~一緒に解いてもやもや解決~ 2-6.5【数学A】
単元:
#数A#場合の数と確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率
-----------------
2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。
-----------------
3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
この動画を見る
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率
-----------------
2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。
-----------------
3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
【高校数学】反復試行の確率~今までとの違いとつながり~ 2-6【数学A】
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
白玉2個、赤玉4個が入っている袋から玉を1個取り出し、色を調べてから元に戻す。
この試行を6回続けて行うとき白玉が5回以上出る確率を求めよ。
この動画を見る
白玉2個、赤玉4個が入っている袋から玉を1個取り出し、色を調べてから元に戻す。
この試行を6回続けて行うとき白玉が5回以上出る確率を求めよ。
【高校数学】必要条件と十分条件~具体例で分かりやすく~ 1-17【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
必要条件と十分条件 具体例紹介動画です
この動画を見る
必要条件と十分条件 具体例紹介動画です
【国語】現代文の勉強法~日本人が陥るミス~
【英語】everyのイメージ~意味と使い方などなど~
【高校数学】命題と条件の例題~基礎を固めよう~ 1-16.5【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数
-----------------
2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
この動画を見る
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数
-----------------
2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
【高校数学】条件の否定~例題と一緒に学ぼう~ 1-16【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$x,y$は実数、$m,n$は整数とする。
次の条件の否定を述べよ。
(ア) $x+y \geqq 2 x+y \lt 2$
(イ) $m$は奇数である $m$は偶数である
(ウ) $x=0$かつ$y \neq 0$ $x \neq 0$または$y=0$
(エ) $x \gt 0$または$x \leqq -2$ $x \leqq 0$ かつ$x \gt -2$したがって$-2 \lt x \leqq 0$
(オ) $m,n$の少なくとも一方は5の倍数である。$m,n$はともに5の倍数でない。
この動画を見る
$x,y$は実数、$m,n$は整数とする。
次の条件の否定を述べよ。
(ア) $x+y \geqq 2 x+y \lt 2$
(イ) $m$は奇数である $m$は偶数である
(ウ) $x=0$かつ$y \neq 0$ $x \neq 0$または$y=0$
(エ) $x \gt 0$または$x \leqq -2$ $x \leqq 0$ かつ$x \gt -2$したがって$-2 \lt x \leqq 0$
(オ) $m,n$の少なくとも一方は5の倍数である。$m,n$はともに5の倍数でない。
【高校数学】命題と条件~全てはここから始まります~ 1-15【数学Ⅰ】
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
a, b, c を実数とする。真偽を調べよ。
ac =bc$\Rightarrow$a=b
この動画を見る
a, b, c を実数とする。真偽を調べよ。
ac =bc$\Rightarrow$a=b