理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【受験算数】数の性質:このおそろしい「分数」を「小数」で表すと、「小数第何位」の数になるか??
単元:
#算数(中学受験)#計算と数の性質#いろいろな計算
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\dfrac{3}{2}×2×5×5×5×5×5×5×5×5$ この分数は小数で表すと小数第□位までの数である。
この動画を見る
$\dfrac{3}{2}×2×5×5×5×5×5×5×5×5$ この分数は小数で表すと小数第□位までの数である。
【受験算数】規則性:1から順番に2の倍数と3の倍数以外の数を並べていくと、「299」は何番目の数になるか?
単元:
#算数(中学受験)#計算と数の性質#規則性(周期算・方陣算・数列・日暦算・N進法)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1から順番に2の倍数と3の倍数以外の数を並べていくと、「299」は何番目の数になるか?
この動画を見る
1から順番に2の倍数と3の倍数以外の数を並べていくと、「299」は何番目の数になるか?
【受験理科】気象:風の吹き方と天気の関係を基礎から解説します!これが分かれば君も「天気の子」!
【受験理科】気象:海風と陸風の違いを説明できる人は見なくて良い動画です!説明できない人はぜひとも理屈で理解するために見ましょう!
【受験算数】ニュートン算:中学受験で使う魔法の解法「ニュートン算」を基礎から丁寧に教えます!
単元:
#算数(中学受験)#文章題#仕事算とニュートン算
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある遊園地に開場前から行列が出来始め、一定の割合で行列に人が加わっていきます。開館と同時に入場口を2つ開けると15分で、5つ開けると5分で行列はなくなります。行列は何分前から人が並び始めましたか。
この動画を見る
ある遊園地に開場前から行列が出来始め、一定の割合で行列に人が加わっていきます。開館と同時に入場口を2つ開けると15分で、5つ開けると5分で行列はなくなります。行列は何分前から人が並び始めましたか。
【数Ⅰ】数と式:間違える人続出!やっかいな1次不等式! -2
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
-2<x<5,-7<y<4のとき,x-yの値の範囲を求めよ。
この動画を見る
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
-2<x<5,-7<y<4のとき,x-yの値の範囲を求めよ。
この動画を見る
-2<x<5,-7<y<4のとき,x-yの値の範囲を求めよ。
【数Ⅰ】数と式:公式が通用しない?因数分解の対処法紹介!x³+2x²-9x-18を因数分解せよ。
【数Ⅰ】数と式:間違える人続出!やっかいな1次不等式! -2<x<5 -7<y<4のとき、x-yの値の範囲を求めよ。
単元:
#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$-2<x<5,-7<y<4$のとき、$x-y$の値の範囲を求めよ。
この動画を見る
$-2<x<5,-7<y<4$のとき、$x-y$の値の範囲を求めよ。
【受験算数】平面図形:台形ABCDと線分AB上、線分CD上にそれぞれ点P、点Qがある。AD=6、BC=9、ABとPQは平行、AP:PB=2:1のとき、線分PQの長さを求めよ。
単元:
#算数(中学受験)#平面図形#相似と相似を利用した問題
指導講師:
理数個別チャンネル
問題文全文(内容文):
台形ABCDと線分AB上,線分CD上にそれぞれ点P,点Qがある。AD=6,BC=9,ABとPQは平行,AP:PB=2:1のとき、線分PQの長さを求めよ。
この動画を見る
台形ABCDと線分AB上,線分CD上にそれぞれ点P,点Qがある。AD=6,BC=9,ABとPQは平行,AP:PB=2:1のとき、線分PQの長さを求めよ。
【英語】共通テスト対策:プロ講師が『共通テストの赤本問題』を解きながら解説してみた!(第二問A)
単元:
#英語(高校生)#大学入試過去問(英語)#共通テスト
指導講師:
理数個別チャンネル
問題文全文(内容文):
共通テストはセンター試験とどう違うのか?
共通テストならではの問われ方、注意点も解説しています!
「意見」と「事実」の違いもチェック
この動画を見る
共通テストはセンター試験とどう違うのか?
共通テストならではの問われ方、注意点も解説しています!
「意見」と「事実」の違いもチェック
【中学公民】高校受験生必見!資本?利潤?難しい言葉解説! 記述で狙われるテーマも確認します
【数B】数列:隣接三項間型(重解) 次の条件によって定められる数列{an}の一般項を求めよ。a[1]=1,a[2]=5,a[n+2]+8a[n+1]+16a[n]=0
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
この動画を見る
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
【数B】数列:隣接三項間型(解2つ) 次の条件によって定められる数列{an}の一般項を求めよ。a1=1,a2=4,a[n+2]+a[n+1]-2a[n]=0
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=4,a_{n+2}+a_{n+1}-2a_n=0$
この動画を見る
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=4,a_{n+2}+a_{n+1}-2a_n=0$
【数B】確率漸化式:ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率P[n]を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率$P_n$を求めよ。
この動画を見る
ある地方では雨が降った日の翌日に雨が降る確率は60%、雨が降らなかった日の翌日に雨が降る確率は30%であるという。今日雨が降っている時、n日後も雨が降る確率$P_n$を求めよ。
【数B】確率漸化式:3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数をa[n]とする。(1)a[n+1]をa[n]の式で表せ。(2)a[n]を求めよ
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数を$a_n$とする。
(1)$a_{n+1}$を$a_n$の式で表せ。
(2)$a_n$を求めよ
この動画を見る
3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数を$a_n$とする。
(1)$a_{n+1}$を$a_n$の式で表せ。
(2)$a_n$を求めよ
【数B】確率漸化式:1回の試行で事象Aの起こる確率が1/3であるとする。この試行をn回行うときに奇数回Aが起こる確率をP[n]とする。(1)P[n+1]をP[n]の式で表せ。(2)P[n]を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1回の試行で事象Aの起こる確率が$\dfrac{1}{3}$であるとする。この試行をn回行うときに奇数回Aが起こる確率を$P_n$とする。
(1)$P_{n+1}$を$P_n$の式で表せ。
(2)$P_n$を求めよ。
この動画を見る
1回の試行で事象Aの起こる確率が$\dfrac{1}{3}$であるとする。この試行をn回行うときに奇数回Aが起こる確率を$P_n$とする。
(1)$P_{n+1}$を$P_n$の式で表せ。
(2)$P_n$を求めよ。
【数B】確率漸化式:さいころをn回投げたとき1の目が偶数回出る確率をp[n]とする(中略) (1)p1を求めよ。(2)p[n+1]をp[n]で表せ。(3)p[n] (n=1,2,3,..)を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
さいころをn回投げたとき1の目が偶数回出る確率を$p_n$とする。ただし、1の目が1回も出なかった場合は偶数回出たと考えることにする。
(1)$p_1$を求めよ。
(2)$p_{n+1}$を$p_n$で表せ。
(3)$p_n$ (n=1,2,3,..)を求めよ。
この動画を見る
さいころをn回投げたとき1の目が偶数回出る確率を$p_n$とする。ただし、1の目が1回も出なかった場合は偶数回出たと考えることにする。
(1)$p_1$を求めよ。
(2)$p_{n+1}$を$p_n$で表せ。
(3)$p_n$ (n=1,2,3,..)を求めよ。
【中学数学】空間図形:図形の回転体はどういう形になる?
【英語】整序英作文:東大志望者必見!過去問を基礎知識だけで解いてみよう
単元:
#英語(高校生)#英作文#整序英作文#大学入試過去問(英語)#学校別大学入試過去問解説(英語)
指導講師:
理数個別チャンネル
問題文全文(内容文):
She is intelligent, but she just doesn't have ( )( )( )( )( ) a good journalist.(一語不足)
be, takes, to, what
(東大過去問)
この動画を見る
She is intelligent, but she just doesn't have ( )( )( )( )( ) a good journalist.(一語不足)
be, takes, to, what
(東大過去問)
【英語】比較の規則変化のルール/音節の考え方
単元:
#英語(中学生)#英語(高校生)#英文法#中2英語#比較#比較(比較級、最上級、more,mostを使った比較、as~asの文、不規則変化するもの、疑問詞で始まる比較の文)
指導講師:
理数個別チャンネル
問題文全文(内容文):
母音について誤解している人が非常に多い。
この動画を見る
母音について誤解している人が非常に多い。
【数Ⅰ】数と式: √(6-√32)の2重根号を外す!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{(6-\sqrt{32})}$の2重根号を外しなさい
この動画を見る
$\sqrt{(6-\sqrt{32})}$の2重根号を外しなさい
【数Ⅰ】2次関数:放物線y=x²-6x+10をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めましょう。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線$y=x²-6x+10$をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めなさい
この動画を見る
放物線$y=x²-6x+10$をx軸、y軸、原点に関してそれぞれ対称移動して得られる放物線の方程式を求めなさい
【数C】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
この動画を見る
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
【数B】空間ベクトル: 四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+3BP+4CP+8DP=0
単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
この動画を見る
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
【数B】数列:N次式型の漸化式! a1=1,a[n+1]=2a[n]-n²+2nで定められる数列{an}の一般項を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=2a_n-n²+2n$で定められる数列${an}$の一般項を求めよ。
この動画を見る
$a_1=1,a_{n+1}=2a_n-n²+2n$で定められる数列${an}$の一般項を求めよ。
【数B】数列:対数型の漸化式! a1=1,a[n+1]=√2a[n]で定められる数列{an}の一般項を求めよ。
単元:
#数列#漸化式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a1=1,a_{n+1}=\sqrt2{a_n}$で定められる数列${an}$の一般項を求めよ。
この動画を見る
$a1=1,a_{n+1}=\sqrt2{a_n}$で定められる数列${an}$の一般項を求めよ。
【数Ⅲ】極限:福島県立医大! 極限値lim[n→∞]l[n]_θ[n]を求めよ。
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に2点A(2,0),B(0,1)がある。自然数nに対し、線分ABを1:nに内分する点を$P_n$とし,$∠AOP_n=θ_n$とする。ただし、$0<θ_n<\dfrac{\pi}{2}$である。線分$AP_n$の長さを$l_n$として、極限値$\displaystyle \lim_{n\to \infty}\dfrac{l_n}{\theta_n}$を求めよ。
この動画を見る
Oを原点とする座標平面上に2点A(2,0),B(0,1)がある。自然数nに対し、線分ABを1:nに内分する点を$P_n$とし,$∠AOP_n=θ_n$とする。ただし、$0<θ_n<\dfrac{\pi}{2}$である。線分$AP_n$の長さを$l_n$として、極限値$\displaystyle \lim_{n\to \infty}\dfrac{l_n}{\theta_n}$を求めよ。
【数Ⅲ】極限:岐阜大の類題! 複素数z[n]をz[1]=1,z[n+1]=i/2(z[n]+1)(n=1,2,3,···)により定める。z[n]の実部x[n],虚部y[n]を求めよ。
単元:
#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。
この動画を見る
複素数$z_1$を$z_1=1$,$z_{n+1}=\dfrac{1}{2}(z_n+1)(n=1,2,3,···)$により定める。$z_n$の実部$x_n$,虚部$y_n$を求めよ。
【数Ⅰ】図形と計量: 0°≦x≦180°のとき、関数y=sin²x+cosx+1の最大値、最小値を求めましょう。
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#高校リード問題集#高校リード問題集数Ⅰ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
この動画を見る
$0°≦x≦180°$のとき、関数$y=sin²x+cosx+1$の最大値、最小値を求めよ。
【中学数学】平方根:平方根の値の範囲をわかりやすく解説!
単元:
#数学(中学生)#中3数学#平方根
指導講師:
理数個別チャンネル
問題文全文(内容文):
①$2<\sqrt a≦3$を満たす自然数aをすべて求めなさい。
②$2<\sqrt a≦5.2$を満たす自然数aがいくつあるか求めなさい。
この動画を見る
①$2<\sqrt a≦3$を満たす自然数aをすべて求めなさい。
②$2<\sqrt a≦5.2$を満たす自然数aがいくつあるか求めなさい。