理数個別チャンネル
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【英語】接続詞ifをゼロから解説!これで見分けられるよ!
単元:
#英語(中学生)#英語(高校生)#英文法#中2英語#接続詞#接続詞(and,or,but,so・when,if,because,before,after・接続詞that)
指導講師:
理数個別チャンネル
問題文全文(内容文):
ifには2種類あるよ!知らない人は必見!
He knows he would like to know if Becky wants any Australian food.を和訳しましょう。
この動画を見る
ifには2種類あるよ!知らない人は必見!
He knows he would like to know if Becky wants any Australian food.を和訳しましょう。
【数I】中高一貫校問題集3(数式・関数編)47:数と式:因数分解:次の式を因数分解せよ。(x+1)(x+2)(x+3)(x+4)-24
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。(x+1)(x+2)(x+3)(x+4)-24
この動画を見る
次の式を因数分解せよ。(x+1)(x+2)(x+3)(x+4)-24
【数B】数列:和の記号∑、シグマの展開! 次の和S[n]を求めよ。S[n]=1/(1+√3)+1/(√3+√5)+1/(√5+√7)+...+1/(√(2n-1)+√(2n+1))
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
【数B】次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1+\sqrt3}+\dfrac{1}{\sqrt3+\sqrt5}+\dfrac{1}{\sqrt5+\sqrt7}+...+\dfrac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$
この動画を見る
【数B】次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1+\sqrt3}+\dfrac{1}{\sqrt3+\sqrt5}+\dfrac{1}{\sqrt5+\sqrt7}+...+\dfrac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$
【数B】数列:和の記号∑、部分分数分解の利用! 次の和S[n]を求めよ。S[n]=3/1²+5/(1²+2²)+7/(1²+2²+3²)+...+(2n+1)/(1²+2²+3²+...+n²)
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の和$S_n$を求めよ。
$S_n=\dfrac{3}{1^2}+\dfrac{5}{1^2+2^2}+\dfrac{7}{1^2+2^2+3^2}+...+\dfrac{2n+1}{1^2+2^2+3^2+...+n^2}$
この動画を見る
次の和$S_n$を求めよ。
$S_n=\dfrac{3}{1^2}+\dfrac{5}{1^2+2^2}+\dfrac{7}{1^2+2^2+3^2}+...+\dfrac{2n+1}{1^2+2^2+3^2+...+n^2}$
【数B】数列:部分分数分解の基本! 次の和S[n]を求めよ。S[n]=1/(1×5)+1/(5×9)+1/(9×13)+...+1/(4n-3)(4n+1)
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1・5}+\dfrac{1}{5・9}+\dfrac{1}{9・13}+...+\dfrac{1}{(4n-3)(4n-1)}$
この動画を見る
次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1・5}+\dfrac{1}{5・9}+\dfrac{1}{9・13}+...+\dfrac{1}{(4n-3)(4n-1)}$
【社会】開成東京問題:~東大合格NO.1~開成中学のあの東京問題を大攻略!part1序章
単元:
#社会(中学受験)#歴史#過去問解説(学校別)#開成中学
指導講師:
理数個別チャンネル
問題文全文(内容文):
~東大合格NO.1~開成中学のあの東京問題を大攻略!part1序章
この動画を見る
~東大合格NO.1~開成中学のあの東京問題を大攻略!part1序章
【数A】整数の性質:次の条件を全て満たす3つの自然数の組(a,b,c)をすべて求めよ。・a,b,cの最大公約数は6・b,cの最大公約数は24最小公倍数は144・a,bの最小公倍数は240(a<b<c)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件を全て満たす3つの自然数の組(a,b,c)をすべて求めよ。
・a,b,cの最大公約数は6
・b,cの最大公約数は24最小公倍数は144
・a,bの最小公倍数は240(a<b<c)
この動画を見る
次の条件を全て満たす3つの自然数の組(a,b,c)をすべて求めよ。
・a,b,cの最大公約数は6
・b,cの最大公約数は24最小公倍数は144
・a,bの最小公倍数は240(a<b<c)
【数A】整数の性質:√n²+40が自然数となるような自然数nをすべて求めよ。
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{n^2+40}$が自然数となるような自然数nをすべて求めよ。
この動画を見る
$\sqrt{n^2+40}$が自然数となるような自然数nをすべて求めよ。
【数I】中高一貫校用問題集(数式・関数編)数と式:因数分解:次の式を因数分解せよ。(x+1)(x+2)(x+3)(x+4)-24
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。$(x+1)(x+2)(x+3)(x+4)-24$
この動画を見る
次の式を因数分解せよ。$(x+1)(x+2)(x+3)(x+4)-24$
【中学数学】関数y=ax²:点A,Bは放物線y=x²上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
理数個別チャンネル
問題文全文(内容文):
点A,Bは放物線$y=x^2$上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
この動画を見る
点A,Bは放物線$y=x^2$上の点であり、そのx座標はそれぞれ 3,2である。△AOBの面積を求めよう。
【数C】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
【中学数学】多項式:工夫して式を因数分解しよう!
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の式を因数分解しましょう。
(1)$(x+y)(x+y-1)-2$
(2)$(x^2+x)^2-8(x^2+x)+12$
(3)$a^3-a^2-2a+2$
この動画を見る
次の式を因数分解しましょう。
(1)$(x+y)(x+y-1)-2$
(2)$(x^2+x)^2-8(x^2+x)+12$
(3)$a^3-a^2-2a+2$
【中学数学】正負の数:~とある中1のテスト問題~「2×3⁹+3⁸+6×3⁷は3の何乗ですか」生徒「なにこれ!?(涙目)」
【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
【数B】ベクトル:2020年第2回高2K塾記述模試の第7問を解いてみた!
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
この動画を見る
三角形OABがあり、OA=2,OB=1,∠AOB=120°である。辺OAの中点をCとし、線分ABを1:2に内分する点をDとする。またOB=a,OB=bとする
(1)OC、ODをそれぞれa,bを用いて表せ。また、内積a・bの値を求めよ。
(2)OH=kOD(kは実数)と表される点Hがある。CT⊥ODとなるとき、kの値を求め、OHをa,bを用いて表せ。
(3)直線ODに関して点Cと対称な点をEとする。OEをa,bを用いて表せ。
(4)直線AB上にAと異なる点Pを∠AOD=∠PODとなるようにとる。OPをa,bを用いて表せ。
【算数】面積:面積の単位が丸わかり!!大きさのイメージも知ることができるよ!!
単元:
#算数(中学受験)#文章題#単位・比と割合・比例・反比例#平面図形#角度と面積
指導講師:
理数個別チャンネル
問題文全文(内容文):
面積の単位、㎡、a、ha、㎢について学んでいきます。どれくらいの大きさかのイメージも紹介していますよ。
この動画を見る
面積の単位、㎡、a、ha、㎢について学んでいきます。どれくらいの大きさかのイメージも紹介していますよ。
【中学数学】正負の数:マイナス×マイナスがなぜプラス??よくあるこの疑問、私ならこう説明します!!
【中学数学】正負の数:加法(たし算)のやり方はこれでも安心♪符号のルール徹底解剖!
【中学数学】正負の数:自然数って何?0は入れる?入れない?この動画を見ればもう忘れません!!
単元:
#数学(中学生)#中1数学#正の数・負の数
指導講師:
理数個別チャンネル
問題文全文(内容文):
よく間違えてしまう、0が自然数に入るかどうか。忘れにくくするために2つの例を紹介します!
この動画を見る
よく間違えてしまう、0が自然数に入るかどうか。忘れにくくするために2つの例を紹介します!
【数Ⅰ】2次関数:aを正の定数とする。関数y=x²-2x(0≦x≦a)について、次の問いに答えよ。(1)最大値を求めよ。(2)最小値を求めよ。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。
関数$y=x^2-2x(0\leqq x\leqq a)$について、次の問いに答えよ。
(1)最大値を求めよ。
(2)最小値を求めよ。
この動画を見る
aを正の定数とする。
関数$y=x^2-2x(0\leqq x\leqq a)$について、次の問いに答えよ。
(1)最大値を求めよ。
(2)最小値を求めよ。
【英検3級】ライティング満点を楽勝にもぎ取る直前講座
単元:
#英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検3級
指導講師:
理数個別チャンネル
問題文全文(内容文):
(wantパターン)
Do you want to study abroad?
(likeパターン)
Do you like studying English?
(whichパターン)
Which do you like better, staying at home or playing outside?
この動画を見る
(wantパターン)
Do you want to study abroad?
(likeパターン)
Do you like studying English?
(whichパターン)
Which do you like better, staying at home or playing outside?
【中学数学】2次方程式:数に関する問題⑥ 2つの続いた正の偶数がある。これらの2数の積は、その間の奇数の4倍より20大きい。2つの偶数の間の奇数を求めなさい。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの続いた正の偶数がある。これらの2数の積は、その間の奇数の4倍より20大きい。2つの偶数の間の奇数を求めなさい。
この動画を見る
2つの続いた正の偶数がある。これらの2数の積は、その間の奇数の4倍より20大きい。2つの偶数の間の奇数を求めなさい。
【数Ⅱ】中高一貫校問題集3(数式・関数編)376:図形と式:円と直線:定点通過の解法! x²+y²-2mx-2m-2=0がmに関係なく通る点は?
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
この動画を見る
4S数学Ⅱ・図形と方程式・問題379
x²+y²-2mx-2m-2=0がmに関係なく通る点を求めよ。
【中学数学】2次方程式:図形に関する問題⑨ 直線y=2x+4上の点Pをy軸の右側にとり、Pからx軸にひいた垂線をPQとする。Rは直線y=2x+4とy軸との交点である。△PQRの面積が15になるPは?
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
直線y=2x+4上の点Pをy軸の右側にとり、Pからx軸にひいた垂線をPQとする。Rは直線y=2x+4とy軸との交点である。△PQRの面積が15になるPは?
この動画を見る
直線y=2x+4上の点Pをy軸の右側にとり、Pからx軸にひいた垂線をPQとする。Rは直線y=2x+4とy軸との交点である。△PQRの面積が15になるPは?
【中学数学】2次方程式:図形に関する問題⑧ 容器を作る問題 もとの長方形の厚紙の縦の長さを求めなさい。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のように、横の長さが縦の長さより4cm長い長方形の厚紙の4すみから、1辺2cmの正方形を切り取って、その残りの厚紙を点線にそって折り曲げて直方体の容器を作ったら、容積が90cm³になった。もとの長方形の厚紙の縦の長さを求めなさい。
この動画を見る
右の図のように、横の長さが縦の長さより4cm長い長方形の厚紙の4すみから、1辺2cmの正方形を切り取って、その残りの厚紙を点線にそって折り曲げて直方体の容器を作ったら、容積が90cm³になった。もとの長方形の厚紙の縦の長さを求めなさい。
【中学数学】2次方程式:図形に関する問題⑦ 動点の問題 平行四辺形PRAQの面積が25cm²になるのは、点PがBから何cm動いたときですか。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
右の図のような直角二等辺三角形ABCで、点PはBを出発して辺BC上をCまで動く。また、点Pを通って、AC,ABに平行にひいた直線がAB,ACと交わる点をそれぞれQ,Rとする。平行四辺形PRAQの面積が25cm²になるのは、点PがBから何cm動いたときですか。
この動画を見る
右の図のような直角二等辺三角形ABCで、点PはBを出発して辺BC上をCまで動く。また、点Pを通って、AC,ABに平行にひいた直線がAB,ACと交わる点をそれぞれQ,Rとする。平行四辺形PRAQの面積が25cm²になるのは、点PがBから何cm動いたときですか。
【中学数学】2次方程式:図形に関する問題⑥ 動点の問題 点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。
単元:
#数学(中学生)#中3数学#2次方程式
教材:
#新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
AB=18cm、BC=12cm、∠B=90°の△ABCがある。点Pは辺AB上を毎秒3cmの速さでAからBまで動き、点Qは辺BC上を毎秒2cmの速さでBからCまで動く。点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。
この動画を見る
AB=18cm、BC=12cm、∠B=90°の△ABCがある。点Pは辺AB上を毎秒3cmの速さでAからBまで動き、点Qは辺BC上を毎秒2cmの速さでBからCまで動く。点P,Qが同時に出発するとき、△PBQの面積21cm²になるのは、出発してから何秒後ですか。
【中学数学】2次方程式:図形に関する問題⑤ 動点の問題 △PBQの面積が28cm²になるのは、点P、Qが出発してから何秒後か求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
教材:
#新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
△PBQの面積が28cm²になるのは、点P、Qが出発してから何秒後か求めよ。
この動画を見る
△PBQの面積が28cm²になるのは、点P、Qが出発してから何秒後か求めよ。
【中学数学】2次方程式:図形に関する問題④ 正方形の紙の4すみから1辺が3cmの正方形を切り取り、直方体の容器を作ったら、容積が675cm³になった。もとの正方形の紙の1辺の長さを求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
教材:
#新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
正方形の紙の4すみから1辺が3cmの正方形を切り取り、直方体の容器を作ったら、容積が675cm³になった。もとの正方形の紙の1辺の長さを求めよ。
この動画を見る
正方形の紙の4すみから1辺が3cmの正方形を切り取り、直方体の容器を作ったら、容積が675cm³になった。もとの正方形の紙の1辺の長さを求めよ。
【中学数学】2次方程式:図形に関する問題③ 縦20m、横30mの長方形の土地に、同じ幅の花だんを作り、残りを芝生にした。芝生の面積を測ったところ、土地全体の面積の68%であった。花だんの幅を求めよ。
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
理数個別チャンネル
問題文全文(内容文):
縦20m、横30mの長方形の土地に、同じ幅の花だんを作り、残りを芝生にした。芝生の面積を測ったところ、土地全体の面積の68%であった。花だんの幅を求めよ。
この動画を見る
縦20m、横30mの長方形の土地に、同じ幅の花だんを作り、残りを芝生にした。芝生の面積を測ったところ、土地全体の面積の68%であった。花だんの幅を求めよ。