学校別大学入試過去問解説(数学)
学校別大学入試過去問解説(数学)
計算しないで答えを出せ!奈良教育大

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m, n$は自然数、$m$は定数
$S(n)=1+2+3+...+mn$
$T(n)=S(n)-(1~mn間のmの倍数の和)$
$\displaystyle \lim_{ n \to \infty } \frac {T(n)}{S(n)}$
この動画を見る
$m, n$は自然数、$m$は定数
$S(n)=1+2+3+...+mn$
$T(n)=S(n)-(1~mn間のmの倍数の和)$
$\displaystyle \lim_{ n \to \infty } \frac {T(n)}{S(n)}$
福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
この動画を見る
$\boxed{1}$
座標平面上の放物線$C_1:y=x^2$と
円$C_2:x^2+(y-b)^2=a^2$を考える。
ただし、$a,b$は正の実数とする。
(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための
必要十分条件は
$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。
(2)$C_1$と$C_2$が異なる$2$点で接するための
必要十分条件は
$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。
(ただし、$C_1$と$C_2$が共有点$P$で接するとは、
$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)
また、このとき$2$つの接点のうち$x$座標が
正のものを$A(\alpha,\beta)$とすると、
$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。
$A$における共通の接線の傾きが$\sqrt3$であるとき、
直線$y=\beta$の下側で、
$C_1$と$C_2$に囲まれた部分の面積は
$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。
$2025$年上智大学TEAP利用型文系過去問題
福田の数学〜青山学院大学2025理工学部第5問〜鋭角三角形の条件と垂心の位置ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
$\triangle OAB$は鋭角三角形であり、
$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$
を満たしている。
$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。
(1)$k$のとり得る値の範囲を求めよ。
上で与えた$\triangle OAB$の頂点$A,B$から
それぞれの対辺に下ろした$2$本の垂線の交点
を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。
(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。
(3)$3$点$O,H,C$が同一直線上にあるとき、
$k$の値と$\dfrac{OH}{OC}$を求めよ。
$2025$年青山学院大学理工学部過去問題
この動画を見る
$\boxed{5}$
$\triangle OAB$は鋭角三角形であり、
$\vert \overrightarrow{OA}\vert=4,\vert \overrightarrow{OB}\vert=3$
を満たしている。
$\overrightarrow{OA}\cdot \overrightarrow{OB}=k$とおくとき、以下の問いに答えよ。
(1)$k$のとり得る値の範囲を求めよ。
上で与えた$\triangle OAB$の頂点$A,B$から
それぞれの対辺に下ろした$2$本の垂線の交点
を$H$とし、辺$AB$を$2:1$に内分する点を$C$とする。
(2)$\overrightarrow{OH}$を$\overrightarrow{OA},\overrightarrow{OB}$および$k$を用いて表せ。
(3)$3$点$O,H,C$が同一直線上にあるとき、
$k$の値と$\dfrac{OH}{OC}$を求めよ。
$2025$年青山学院大学理工学部過去問題
福田の数学〜青山学院大学2025理工学部第4問〜折れ線の長さの和が4となる点の軌跡と面積

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。
線分$AB$上の点$P$に対して、
$xy$平面上の点$Q$は以下の条件$(a),(b)$を
満たすとする。
$(a)$$P$と$Q$の$x$座標は等しく、
$Q$の$y$座標は正である。
$(b)$$AP+PQ+QB=4$
このとき、以下の問いに答えよ。
ただし、線分は両方の端点を含むものとする。
(1)$P$の座標を$(s,0)$とするとき、
$Q$の座標を$s$を用いて表せ。
(2)$P$が線分$AB$上を$A$から$B$まで動くとき、
$Q$の軌跡を$xy$平面上に図示せよ。
(3)$P$が線分$AB$上を$A$から$B$まで動くとき、
線分$PQ$が通過する範囲の面積を求めよ。
$2025$年青山学院大学理工学部過去問題
この動画を見る
$\boxed{4}$
$xy$平面上に$2$つの定点$A(-1,0),B(1,0)$がある。
線分$AB$上の点$P$に対して、
$xy$平面上の点$Q$は以下の条件$(a),(b)$を
満たすとする。
$(a)$$P$と$Q$の$x$座標は等しく、
$Q$の$y$座標は正である。
$(b)$$AP+PQ+QB=4$
このとき、以下の問いに答えよ。
ただし、線分は両方の端点を含むものとする。
(1)$P$の座標を$(s,0)$とするとき、
$Q$の座標を$s$を用いて表せ。
(2)$P$が線分$AB$上を$A$から$B$まで動くとき、
$Q$の軌跡を$xy$平面上に図示せよ。
(3)$P$が線分$AB$上を$A$から$B$まで動くとき、
線分$PQ$が通過する範囲の面積を求めよ。
$2025$年青山学院大学理工学部過去問題
福田の数学〜青山学院大学2025理工学部第3問〜三角関数のグラフと面積

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。
(1)$0\leqq x \leqq \pi$において、
曲線$y=f(x)$の概形を描け。
ただし、凹凸は調べなくてよい。
(2)$0\leqq x \leqq \pi$において、
$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。
(3)$0\leqq x \leqq \pi$において、
$2$曲線$y=f(x),y=g(x)$で囲まれた図形の
面積$S$を求めよ。
$2025$年青山学院大学理工学部過去問題
この動画を見る
$\boxed{3}$
$f(x)=\cos^3 x+\sin^3 x,g(x)=\sin x$とする。
(1)$0\leqq x \leqq \pi$において、
曲線$y=f(x)$の概形を描け。
ただし、凹凸は調べなくてよい。
(2)$0\leqq x \leqq \pi$において、
$2$曲線$y=f(x),y=g(x)$の共有点の座標を求めよ。
(3)$0\leqq x \leqq \pi$において、
$2$曲線$y=f(x),y=g(x)$で囲まれた図形の
面積$S$を求めよ。
$2025$年青山学院大学理工学部過去問題
福田の数学〜青山学院大学2025理工学部第2問〜虚数係数の2次方程式の解と正方形の頂点

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$i$を虚数単位とする。
複素数$z$についての方程式
$z^2-4iz=4\sqrt3 i \ \cdots (*)$
の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、
$\alpha,\beta$が表す複素数平面上の点を
それぞれ$A,B$とする。
(1)方程式$(*)$は
$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$
と表せるので
$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。
(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。
また、線分$AB$を対角線とする正方形の
残りの$2$頂点を表す複素数は
$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と
$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。
$2025$年青山学院大学理工学部過去問題
この動画を見る
$\boxed{2}$
$i$を虚数単位とする。
複素数$z$についての方程式
$z^2-4iz=4\sqrt3 i \ \cdots (*)$
の$2$つの解を$\alpha,\beta(\vert \alpha \vert \lt \vert \beta \vert )$とし、
$\alpha,\beta$が表す複素数平面上の点を
それぞれ$A,B$とする。
(1)方程式$(*)$は
$(z-\boxed{ア}i)^2=\boxed{イ} \left(\cos \dfrac{\boxed{ウ}}{\boxed{エ}}\pi+i\sin\dfrac{\boxed{ウ}}{\boxed{エ}}\pi\right) \qquad \left(0\leqq \dfrac{\boxed{ウ}}{\boxed{エ}}\pi \lt 2\pi \right)$
と表せるので
$\alpha=-\sqrt{\boxed{オ}}+\left(\boxed{カ}-\sqrt{\boxed{キ}}\right)i$である。
(2)線分$AB$の長さは$\boxed{ク}\sqrt{\boxed{ケ}}$である。
また、線分$AB$を対角線とする正方形の
残りの$2$頂点を表す複素数は
$-\sqrt{\boxed{コ}}+\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$と
$\sqrt{\boxed{コ}}-\left(\boxed{サ}+\sqrt{\boxed{シ}}\right)i$である。
$2025$年青山学院大学理工学部過去問題
福田の数学〜青山学院大学2025理工学部第1問〜さいころの目によって平面上を動く点に関する確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$1$個のさいころを$4$回続けて投げる
反復試行において、
さいころの出る目を順に$X_1,X_2,X_3,X_4$として、
$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を
以下のように定める。
$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に
ある点を$P_1$とする。
$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に
ある点を$P_2$とする。
$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に
ある点を$P_3$とする。
$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に
ある点を$P_4$とする。
例えば、さいころの出た目が順に$3,2,5,5$ならば
$P_1,P_2,P_3,P_4$の座標はそれぞれ
$(3,0),(3,2),(-2,2),(-2,-3)$となる。
(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。
(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は
$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。
ただし、線分は両方の端点を含むものとする。
(3)$P_4$の座標が$(3,3)$である確率は
$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
この動画を見る
$\boxed{1}$
$1$個のさいころを$4$回続けて投げる
反復試行において、
さいころの出る目を順に$X_1,X_2,X_3,X_4$として、
$xy$平面上の$4$点$P_1,P_2,P_3,P_4$を
以下のように定める。
$1$.原点$O$から$x$軸の正の向きに$X_1$だけ進んだ位置に
ある点を$P_1$とする。
$2$.$P_1$から$y$軸の正の向きに$X_2$だけ進んだ位置に
ある点を$P_2$とする。
$3$.$P_2$から$x$軸の負の向きに$X_3$だけ進んだ位置に
ある点を$P_3$とする。
$4$.$P_3$から$y$軸の負の向きに$X_4$だけ進んだ位置に
ある点を$P_4$とする。
例えば、さいころの出た目が順に$3,2,5,5$ならば
$P_1,P_2,P_3,P_4$の座標はそれぞれ
$(3,0),(3,2),(-2,2),(-2,-3)$となる。
(1)$P_4$が$O$と一致する確率は$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。
(2)線分$OP_1$と線分$P_3P_4$が共有点をもつ確率は
$\dfrac{\boxed{エオ}}{\boxed{カキク}}$である。
ただし、線分は両方の端点を含むものとする。
(3)$P_4$の座標が$(3,3)$である確率は
$\dfrac{\boxed{ケ}}{\boxed{コサシ}}$である。
福田の数学〜早稲田大学2025商学部第3問〜三角形を一辺を軸として回転させたときの回転体の体積の最大

単元:
#数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
空間内の異なる$4$点
$A,B,C,D$が$AD=BC=2$、
$AB=CD=1$を満たし、線分$AD$と線分$BC$が
点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ
$AP:PD=s:(1-s),$
$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$
に内分しているとする。次の問いに答えよ。
(1)$s$を$t$を用いて表せ。
(2)$t$のとりうる値の範囲を求めよ。
(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、
$\triangle ABP$の辺と内部が通過する部分の体積を
$V$とする。$V$の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{3}$
空間内の異なる$4$点
$A,B,C,D$が$AD=BC=2$、
$AB=CD=1$を満たし、線分$AD$と線分$BC$が
点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ
$AP:PD=s:(1-s),$
$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$
に内分しているとする。次の問いに答えよ。
(1)$s$を$t$を用いて表せ。
(2)$t$のとりうる値の範囲を求めよ。
(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、
$\triangle ABP$の辺と内部が通過する部分の体積を
$V$とする。$V$の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
福田の数学〜早稲田大学2025商学部第2問〜x軸に関する対称移動とy=√3xに関する対称移動の組合せで決まる点列

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$a,b$を実数とする。
座標平面上の点$P_1,P_2,P_3,\cdots $は
以下の条件を満たしている。
すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は
$x$軸に関して対称な位置にある。
ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で
あるとする。
また、すべての正の偶数$n$に対して、
$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な
位置にある。
ただし、$P_n$が直線$y=ax+b$上にあるときは
$P_n=P_{n+1}$であるとする。
(1)$a=0,b=1,P_1(0,0)$であるとき、
$P_{2025}$の座標を求めよ。
(2)$a=1,b=0,P_1(2,1)$であるとき、
$P_{2025}$の座標を求めよ。
(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。
$m,n$を正の整数とする。
$P_m$と$P_n$の距離の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{2}$
$a,b$を実数とする。
座標平面上の点$P_1,P_2,P_3,\cdots $は
以下の条件を満たしている。
すべての正の奇数$n$に対して、$P_n$と$P_{n+1}$は
$x$軸に関して対称な位置にある。
ただし、$P_n$が$x$軸上にあるときは$P_n=P_{n+1}$で
あるとする。
また、すべての正の偶数$n$に対して、
$P_n$と$P_{n+1}$は直線$y=ax+b$に関して対称な
位置にある。
ただし、$P_n$が直線$y=ax+b$上にあるときは
$P_n=P_{n+1}$であるとする。
(1)$a=0,b=1,P_1(0,0)$であるとき、
$P_{2025}$の座標を求めよ。
(2)$a=1,b=0,P_1(2,1)$であるとき、
$P_{2025}$の座標を求めよ。
(3)$a=\sqrt3,b=0,P_1(1,1)$であるとする。
$m,n$を正の整数とする。
$P_m$と$P_n$の距離の最大値を求めよ。
$2025$年早稲田大学商学部過去問題
福田の数学〜早稲田大学2025商学部第1問(4)〜正九角形の頂点を結んでできる正三角形の個数

単元:
#数A#大学入試過去問(数学)#場合の数と確率#図形の性質#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)$P$を平面上の正九角形とする。
$P$の異なる$2$つの頂点を通る直線をすべて考える。
これら$36$本の直線のうちの$3$本により平面上で
囲まれてできる正三角形の総数は$\boxed{エ}$である。
ただし、互いに合同でも位置の異なるものは
異なる三角形として数える。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{1}$
(4)$P$を平面上の正九角形とする。
$P$の異なる$2$つの頂点を通る直線をすべて考える。
これら$36$本の直線のうちの$3$本により平面上で
囲まれてできる正三角形の総数は$\boxed{エ}$である。
ただし、互いに合同でも位置の異なるものは
異なる三角形として数える。
$2025$年早稲田大学商学部過去問題
福田の数学〜早稲田大学2025商学部第1問(3)〜定積分で表された関数方程式

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)$m,n$を正の整数とする。
$n$次関数$f(x)$が次の等式を満たしているとき、
$f(x)=\boxed{ウ}$である。
$\displaystyle \int_{0}^{x} {f(t)}^{m-1} dt=(2x)^m f(x)$
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{1}$
(3)$m,n$を正の整数とする。
$n$次関数$f(x)$が次の等式を満たしているとき、
$f(x)=\boxed{ウ}$である。
$\displaystyle \int_{0}^{x} {f(t)}^{m-1} dt=(2x)^m f(x)$
$2025$年早稲田大学商学部過去問題
福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)数列$\{a_n\}$が次の条件を満たしている。
$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$
このとき、一般項$a_n$は$a_n=\boxed{イ}$である。
$2025$年早稲田大学商学部過去問題
この動画を見る
$\boxed{1}$
(2)数列$\{a_n\}$が次の条件を満たしている。
$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$
このとき、一般項$a_n$は$a_n=\boxed{イ}$である。
$2025$年早稲田大学商学部過去問題
福田の数学〜早稲田大学2025商学部第1問(1)〜方程式の実数解の個数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と
曲線$y=x^3$がちょうど$2$つの共有点をもつとき、
$a=\boxed{ア}$である。
$2025$年早稲田大学商学部過去問
この動画を見る
$\boxed{1}$
(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と
曲線$y=x^3$がちょうど$2$つの共有点をもつとき、
$a=\boxed{ア}$である。
$2025$年早稲田大学商学部過去問
福田の数学〜早稲田大学2025教育学部第4問〜共有点の個数と面積計算

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$は実数とする。
曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との
共有点の偶数を$f(k)$で表す。次の問いに答えよ。
ただし、必要ならば自然数$n$に対し
$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは
説明なしに用いてもよい。
(1)$k$が実数全体を動くとき、
$f(k)$の最大値の最小値を求めよ。
(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。
(3)$\alpha$を正の実数とする。
曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる
部分の面積を$\alpha$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{4}$
$k$は実数とする。
曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との
共有点の偶数を$f(k)$で表す。次の問いに答えよ。
ただし、必要ならば自然数$n$に対し
$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは
説明なしに用いてもよい。
(1)$k$が実数全体を動くとき、
$f(k)$の最大値の最小値を求めよ。
(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。
(3)$\alpha$を正の実数とする。
曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる
部分の面積を$\alpha$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
福田の数学〜早稲田大学2025教育学部第3問〜楕円と接線

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
座標平面上で、
点$H(0,2\sqrt2)$から楕円$C:x^2+2y^2=8$へ引いた
$2$つの接線を$L_1,L_2$とし、$L_1,L_2$と$C$との
共有点をそれぞれ$P_1,P_2$とする。
ただし、$P_1$の$x$座標は正であるとする。
次の問いに答えよ。
(1)直線$L_1$と$L_2$それぞれの傾きを求めよ。
(2)$2$点$P_1,P_2$を通る直線を$L_3$とする。
直線$L_3$と楕円$C$で囲まれた$2$つの部分のうち、
直線$L_3$の上側にある方の面積を求めよ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{3}$
座標平面上で、
点$H(0,2\sqrt2)$から楕円$C:x^2+2y^2=8$へ引いた
$2$つの接線を$L_1,L_2$とし、$L_1,L_2$と$C$との
共有点をそれぞれ$P_1,P_2$とする。
ただし、$P_1$の$x$座標は正であるとする。
次の問いに答えよ。
(1)直線$L_1$と$L_2$それぞれの傾きを求めよ。
(2)$2$点$P_1,P_2$を通る直線を$L_3$とする。
直線$L_3$と楕円$C$で囲まれた$2$つの部分のうち、
直線$L_3$の上側にある方の面積を求めよ。
$2025$年早稲田大学教育学部過去問題
【n進法】同じ桁数になるようなもの?【京都大学】

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
この動画を見る
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
福田の数学〜早稲田大学2025教育学部第2問〜組合せと確率の基本的な性質

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
$n$を自然数とする。
$1$から$n$mでの数字がもれなく一つずつ記入された
$n$枚の赤色のカードと$1$から$n$までの数字がもれなく
一つずつ記入された$n$枚の白色のカードがある。
この$2n$枚のカードの中から同時に$2$枚を取り出し、
カードに記入された数字を確認した後にもとに戻す、
という試行を$2$回行う。次の問いに答えよ。
(1)$1$回目に取り出した$2$枚のカードに記入された
数字が同じであり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した$2$枚の
カードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(2)$1$回目に取り出した$2$枚のカードに記入された
数字が異なり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した
$2$枚のカードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(3)$1$回目に取り出した$2$枚のカードに記入された数字と
$2$回目に取り出した$2$枚のカードに記入された
数字の間に共通の数字が存在する確率を
$n$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{2}$
$n$を自然数とする。
$1$から$n$mでの数字がもれなく一つずつ記入された
$n$枚の赤色のカードと$1$から$n$までの数字がもれなく
一つずつ記入された$n$枚の白色のカードがある。
この$2n$枚のカードの中から同時に$2$枚を取り出し、
カードに記入された数字を確認した後にもとに戻す、
という試行を$2$回行う。次の問いに答えよ。
(1)$1$回目に取り出した$2$枚のカードに記入された
数字が同じであり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した$2$枚の
カードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(2)$1$回目に取り出した$2$枚のカードに記入された
数字が異なり、かつ$1$回目に取り出した$2$枚の
カードに記入された数字と$2$回目に取り出した
$2$枚のカードに記入された数字の間に共通の数字が
存在しない取り出し方の総数を$n$を用いて表せ。
(3)$1$回目に取り出した$2$枚のカードに記入された数字と
$2$回目に取り出した$2$枚のカードに記入された
数字の間に共通の数字が存在する確率を
$n$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
福田の数学〜早稲田大学2025教育学部第1問(4)〜2変数関数の最大

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(4)$4$つの辺$AB,BC,CD,DA$の長さが$1$である
四面体$ABCD$を考える。
そのような四面体の体積の最大値を求めよ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{1}$
(4)$4$つの辺$AB,BC,CD,DA$の長さが$1$である
四面体$ABCD$を考える。
そのような四面体の体積の最大値を求めよ。
$2025$年早稲田大学教育学部過去問題
福田の数学〜早稲田大学2025教育学部第1問(3)〜5角柱の10個の点から同一平面上にある4点を選ぶ確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(3)底面が正五角形である$5$角柱の頂点から相異なる
$4$点を選ぶとき、
$4$点が同一平面上にある確率を求めよ。
ただし、$4$点の選び方は同様に確からしいとする。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{1}$
(3)底面が正五角形である$5$角柱の頂点から相異なる
$4$点を選ぶとき、
$4$点が同一平面上にある確率を求めよ。
ただし、$4$点の選び方は同様に確からしいとする。
$2025$年早稲田大学教育学部過去問題
福田の数学〜早稲田大学2025教育学部第1問(2)〜三角形の外心と垂心と点の回転

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)座標平面上の$3$点
$A(1,0),B(0,-1),C(-1,1)$を
頂点とする三角形$ABC$を考える。
三角形$ABC$をその外心を中心として反時計回りに
$\dfrac{\pi}{3}$だけ回転することで得られる三角形の
垂心の座標を求めよ。
なお、三角形の$3$頂点から対辺または
その延長に下ろした$3$本の垂線は一点で交わり、
その交点を三角形の垂心という。
$2025$年早稲田大学教育学部第1問過去問題
この動画を見る
$\boxed{1}$
(2)座標平面上の$3$点
$A(1,0),B(0,-1),C(-1,1)$を
頂点とする三角形$ABC$を考える。
三角形$ABC$をその外心を中心として反時計回りに
$\dfrac{\pi}{3}$だけ回転することで得られる三角形の
垂心の座標を求めよ。
なお、三角形の$3$頂点から対辺または
その延長に下ろした$3$本の垂線は一点で交わり、
その交点を三角形の垂心という。
$2025$年早稲田大学教育学部第1問過去問題
福田の数学〜早稲田大学2025教育学部第1問(1)〜シグマ計算

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)$k$を自然数とする。次の数
$-1^2+2^2-3^2+4^2-5^2+6^2- \cdots -(2k-1)^2+(2k)^2$
を$k$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
この動画を見る
$\boxed{1}$
(1)$k$を自然数とする。次の数
$-1^2+2^2-3^2+4^2-5^2+6^2- \cdots -(2k-1)^2+(2k)^2$
を$k$を用いて表せ。
$2025$年早稲田大学教育学部過去問題
福田の数学〜東京慈恵会医科大学2025医学部第4問〜複素数の絶対値の取りうる値の範囲

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$z$は実数ではない複素数で、
$z+\dfrac{1}{z-1}$が正の実数となるものとする。
このとき、
$ \left \vert \dfrac{1}{z-1}-\dfrac{z- \overline{z}}{2}+1 \right \vert $がとりうる値の
範囲を求めよ。
ただし、$\overline{z}$は$z$に共役な複素数とする。
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{4}$
$z$は実数ではない複素数で、
$z+\dfrac{1}{z-1}$が正の実数となるものとする。
このとき、
$ \left \vert \dfrac{1}{z-1}-\dfrac{z- \overline{z}}{2}+1 \right \vert $がとりうる値の
範囲を求めよ。
ただし、$\overline{z}$は$z$に共役な複素数とする。
$2025$年東京慈恵会医科大学医学部過去問題
福田の数学〜東京慈恵会医科大学2025医学部第3問〜双曲線が表す領域と素数の性質

単元:
#数A#大学入試過去問(数学)#平面上の曲線#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
自然数$p$は$2$以上の定数とする。
$xy$平面上で不等式$x^2-py^2 \geqq -1$の表す領域
を$D$とする。
自然数$r$は、円$(x-p)^2+y^2=r$が領域$D$に
含まれるような最大のものとするとき、
次の問いに答えよ。
(1)$r$を$p$を用いて表せ。
(2) (1)のもとで、関係式$(x-p)^2+y^2=r$をみたす
互いに異なる素数の組$(x,y,p)$のうち、
$p$の値が最小となるものを求めよ。
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{3}$
自然数$p$は$2$以上の定数とする。
$xy$平面上で不等式$x^2-py^2 \geqq -1$の表す領域
を$D$とする。
自然数$r$は、円$(x-p)^2+y^2=r$が領域$D$に
含まれるような最大のものとするとき、
次の問いに答えよ。
(1)$r$を$p$を用いて表せ。
(2) (1)のもとで、関係式$(x-p)^2+y^2=r$をみたす
互いに異なる素数の組$(x,y,p)$のうち、
$p$の値が最小となるものを求めよ。
$2025$年東京慈恵会医科大学医学部過去問題
福田の数学〜東京慈恵会医科大学2025医学部第2問〜定積分と不等式の証明

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
次の問いに答えよ。ただし、対数は自然対数とする。
(1)$3$以上の自然数$n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$
(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。
(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{2}$
次の問いに答えよ。ただし、対数は自然対数とする。
(1)$3$以上の自然数$n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{2\log(n+1)}\leqq \displaystyle \int_{0}^{1} \dfrac{x}{\log(x+n)} dx \leqq \dfrac{1}{2\log n}$
(2)不定積分$\displaystyle \int \dfrac{1}{x(log x)^2} dx$ を求めよ。
(3)$m \geqq n$をみたす$3$以上の自然数$m,n$について、
次の不等式が成り立つことを示せ。
$\dfrac{1}{\log n}-\dfrac{1}{\log(m+1)}\leqq \displaystyle \sum_{k=n}^{m} \dfrac{2}{k \log k} \displaystyle \int_{0}^{1} \dfrac{1}{\log(x+k)} dx \leqq \dfrac{1}{\log(n-1)} -\dfrac{1}{\log m}$
$2025$年東京慈恵会医科大学医学部過去問題
福田の数学〜東京慈恵会医科大学2025医学部第1問〜さいころの目の積の確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
$1$個のさいころを$3$回続けて投げるとき、
$k$回目に出る目を$X_k (k-1,2,3)$とする。
このとき、
積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、
和$X_1+X_2,X_2+X_3,X_3+X_1$が、
いずれも$6$の倍数にならない確率は$\boxed{イ}$である。
$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る
$\boxed{1}$
$1$個のさいころを$3$回続けて投げるとき、
$k$回目に出る目を$X_k (k-1,2,3)$とする。
このとき、
積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、
和$X_1+X_2,X_2+X_3,X_3+X_1$が、
いずれも$6$の倍数にならない確率は$\boxed{イ}$である。
$2025$年東京慈恵会医科大学医学部過去問題
福田の数学〜早稲田大学2025社会科学部第3問〜三角関数の最大最小と三角方程式の解の個数

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$\theta$の関数
$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$
を考える。
ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。
(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、
$f(\theta)$を$k$の関数で表せ。
(2)$f(\theta)$の最大値、最小値を求めよ。
また、そのときの$\theta$の値を求めよ。
(3) (1)の$k$に対して、$\theta$の方程式
$f(\theta)=ak$の解の個数を求めよ。
ただし、定数$a$は$0\lt a \leqq 3$とする。
$2025$年早稲田大学社会科学部過去問題
この動画を見る
$\boxed{3}$
$\theta$の関数
$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$
を考える。
ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。
(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、
$f(\theta)$を$k$の関数で表せ。
(2)$f(\theta)$の最大値、最小値を求めよ。
また、そのときの$\theta$の値を求めよ。
(3) (1)の$k$に対して、$\theta$の方程式
$f(\theta)=ak$の解の個数を求めよ。
ただし、定数$a$は$0\lt a \leqq 3$とする。
$2025$年早稲田大学社会科学部過去問題
福田の数学〜早稲田大学2025社会科学部第2問〜階差数列

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち
$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$
とする。次の問いに答えよ。
(1)$a_n=-\dfrac{1}{n}$のとき、
$b_n$を$n$の式で表す。
(2)$b_n=\dfrac{1}{n(n+1)}$のとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
(3)数列$\{b_n\}$が以下を満たすとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$
$2025$念早稲田大学社会科学部過去問題
この動画を見る
$\boxed{2}$
数列$\{a_n\}$の階差数列を$\{b_n\}$、すなわち
$b_n=a_{n+1}-a_n \quad (n=1,2,3,\cdots)$
とする。次の問いに答えよ。
(1)$a_n=-\dfrac{1}{n}$のとき、
$b_n$を$n$の式で表す。
(2)$b_n=\dfrac{1}{n(n+1)}$のとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
(3)数列$\{b_n\}$が以下を満たすとき、
$a_n$を$n$の式で表せ。ただし、$a_1=1$とする。
$\begin{eqnarray}
\left\{
\begin{array}{l}
b_1=1 \\
b_n=n(n+1) \quad (n\geqq 2)
\end{array}
\right.
\end{eqnarray}$
$2025$念早稲田大学社会科学部過去問題
福田の数学〜早稲田大学2025社会科学部第1問〜n^pの1の位

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
自然数$n,p$に対して、$n^p$の$1$の位の数を
$f_p(n)$で表す。次の問いに答えよ。
(1)$f_2(n)$の取りうる値をすべて求めよ。
(2)$f_5(n)-f_1(n)$の値を求めよ。
(3)$f_{100}(n)$の取りうる値をすべて求めよ。
$2025$年早稲田大学社会科学部過去問題
この動画を見る
$\boxed{1}$
自然数$n,p$に対して、$n^p$の$1$の位の数を
$f_p(n)$で表す。次の問いに答えよ。
(1)$f_2(n)$の取りうる値をすべて求めよ。
(2)$f_5(n)-f_1(n)$の値を求めよ。
(3)$f_{100}(n)$の取りうる値をすべて求めよ。
$2025$年早稲田大学社会科学部過去問題
福田の数学〜早稲田大学2025人間科学部第5問〜接線と面積

単元:
#大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{5}$
曲線$C:y=\cos x\left(0\leqq x \leqq \dfrac{\pi}{2}\right)$上の点
$(\theta,\cos\theta)$における接線を$l$とする。
(1)$\theta=\dfrac{\pi}{4}$のとき、接線$l$と
$x$軸との交点の座標は$\left(\dfrac{\pi+\boxed{二}}{\boxed{ヌ}},0\right)$である。
(2)曲線$C$と接線$l$、および$x$軸によって
囲まれた部分の面積が$1$であるとき、
$\sin\theta=\boxed{ネ}-\sqrt{\boxed{ノ}}$である。
$2025$年早稲田大学人間科学部過去問題
福田の数学〜早稲田大学2025人間科学部第4問〜3次方程式の解が直角三角形を作る条件

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
$k$を実数の定数となる。
$z$についての方程式
$z^3-5z^2+kz-5=0$の$3$つの解は
複素数平面上で斜辺$2$の直角三角形の頂点となる。
このとき、$k=\boxed{ト}$であり、
この直角三角形の面積は$\boxed{ナ}$である。
$2025$年早稲田大学人間科学部過去問題
この動画を見る
$\boxed{4}$
$k$を実数の定数となる。
$z$についての方程式
$z^3-5z^2+kz-5=0$の$3$つの解は
複素数平面上で斜辺$2$の直角三角形の頂点となる。
このとき、$k=\boxed{ト}$であり、
この直角三角形の面積は$\boxed{ナ}$である。
$2025$年早稲田大学人間科学部過去問題
