上智大学
上智大学
福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。
(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。
(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。
(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。
(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。
(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。 $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。
2021上智大学理系過去問
この動画を見る
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。
(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。
(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。
(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。
(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。
(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。 $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。
2021上智大学理系過去問
福田の数学〜上智大学2021年TEAP利用理系第3問〜複雑な試行の確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。
$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}$
2021上智大学理系過去問
この動画を見る
${\Large\boxed{3}}$南北方向にm区画、東西方向にn区画に区切られた長方形の土地がある。
この土地のそれぞれの区画にm種類の作物を1種類ずつ植える。ただし、南北方向に
は同じ種類の作物が植えられている区画はないようにする。このとき、東西方向に
隣り合う区画に同じ種類の作物が植えられている場合には、それらの区画は連結
した1個の畑とみなすとする。例えば、南北方向に3区画、東西方向に5区画で、
A,B,C3種類の作物を次のように植えた場合、畑が11個とみなす。
(1)$m=3$の時を考える。$n=1$ならば、畑の数は常に3個で、1通りある。
$n=2$ならば、畑の数は3個、5個、6個で3通りある。$n=3$ならば、畑の数は
$\boxed{\ \ ク\ \ }$通りある。$n=10$ならば、畑の数は$\boxed{\ \ ケ\ \ }$通りある。
(2)$m=3$で$n=3$のとき、畑の数が8個になる植え方は$\boxed{\ \ コ\ \ }$通りある。
(3)$m=6$のときを考える。各列の南北方向の6区画に作物を植える植え方は6!通り
あるが、それらすべてが等確率になるように植えることにする。$n=2$のとき、
畑が8個である確率は$\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}$であり、畑が9個である確率は$\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$であり、
畑が10個である確率は$\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}$である。$n=3$のとき、
畑が10個である確率をpとすると$\boxed{\ \ け\ \ }$である。
$\boxed{\ \ け\ \ }$の選択肢:
$(\textrm{a})p \geqq \frac{1}{100} (\textrm{b})\frac{1}{200} \leqq p \lt \frac{1}{100} (\textrm{c})\frac{1}{500} \leqq p \lt \frac{1}{200}$
$(\textrm{d})\frac{1}{1000} \leqq p \lt \frac{1}{500} (\textrm{e})\frac{1}{2000} \leqq p \lt \frac{1}{1000} (\textrm{f})\frac{1}{5000} \leqq p \lt \frac{1}{2000}$
$(\textrm{g})\frac{1}{10000} \leqq p \lt \frac{1}{5000} (\textrm{h})p \lt \frac{1}{10000}$
2021上智大学理系過去問
福田の数学〜上智大学2021年TEAP利用理系第2問〜集合の要素と包含関係

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$実数からなる集合A,B,Cを次のように定義する。ただし、$a \gt 0$
$A=\left\{x |\ |x| \lt a \right\}$
$B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}$
$C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}$
(1)$A \cap B$が空集合であるための必要十分条件は$a \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }$である。
(2)$A \supset B$であるための必要十分条件は$a \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }$である。
$\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }$の選択肢$:(\textrm{a})= (\textrm{b})\lt (\textrm{c})\leqq (\textrm{d})\gt (\textrm{e})\geqq (\textrm{f})\neq$
$\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }$の選択肢$:(\textrm{a})1 (\textrm{b})2 (\textrm{c})3 (\textrm{d})5 (\textrm{e})7 (\textrm{f})10$
($\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7$
(3)$-1 \boxed{\ \ き\ \ }C$であり、$5 \boxed{\ \ く\ \ }C$である。
$\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }$の選択肢$:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset$
(4)Cに属する整数は$\boxed{\ \ オ\ \ }$個ある。
(5)$A \subset C$となるaのうち、整数で最大のものは$\boxed{\ \ カ\ \ }$である。
(6)$A \supset C$となるaのうち、整数で最小のものは$\boxed{\ \ キ\ \ }$である。
2021上智大学理系過去問
この動画を見る
${\Large\boxed{2}}$実数からなる集合A,B,Cを次のように定義する。ただし、$a \gt 0$
$A=\left\{x |\ |x| \lt a \right\}$
$B=\left\{x |\ (x+2)(x-5)(x^2+2x-7) \leqq 0 \right\}$
$C=\left\{x |\ 3^{\frac{x}{3}} \leqq \frac{1}{3}(x+4) \right\}$
(1)$A \cap B$が空集合であるための必要十分条件は$a \boxed{\ \ お\ \ } \ \boxed{\ \ \alpha\ \ }$である。
(2)$A \supset B$であるための必要十分条件は$a \boxed{\ \ か\ \ } \ \boxed{\ \ \beta\ \ }$である。
$\boxed{\ \ お\ \ },\ \boxed{\ \ か\ \ }$の選択肢$:(\textrm{a})= (\textrm{b})\lt (\textrm{c})\leqq (\textrm{d})\gt (\textrm{e})\geqq (\textrm{f})\neq$
$\boxed{\ \ \alpha\ \ },\ \boxed{\ \ \beta\ \ }$の選択肢$:(\textrm{a})1 (\textrm{b})2 (\textrm{c})3 (\textrm{d})5 (\textrm{e})7 (\textrm{f})10$
($\textrm{g})-1+2\sqrt2 (\textrm{h})1+2\sqrt2 (\textrm{i})-2+\sqrt7 (\textrm{j})2+\sqrt7$
(3)$-1 \boxed{\ \ き\ \ }C$であり、$5 \boxed{\ \ く\ \ }C$である。
$\boxed{\ \ き\ \ },\ \boxed{\ \ く\ \ }$の選択肢$:(\textrm{a})\in (\textrm{b})\notin (\textrm{c})\ni (\textrm{d})∋ (\textrm{e})= (\textrm{f})\subset (\textrm{g})\supset$
(4)Cに属する整数は$\boxed{\ \ オ\ \ }$個ある。
(5)$A \subset C$となるaのうち、整数で最大のものは$\boxed{\ \ カ\ \ }$である。
(6)$A \supset C$となるaのうち、整数で最小のものは$\boxed{\ \ キ\ \ }$である。
2021上智大学理系過去問
福田の数学〜上智大学2021年TEAP利用理系第1問(3)〜非回転体の体積

単元:
#大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。
$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2} (\textrm{b})3\pi (\textrm{c})\frac{3\pi^2}{2} (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2 (\textrm{f})\frac{\pi\log 2}{2} (\textrm{g})3\pi^2\log 2$
2021上智大学理系過去問
この動画を見る
${\Large\boxed{1}}$ (3)不等式
$1 \leqq z \leqq 4,\ \frac{x^2}{z^2}+4z^4y^2 \leqq 1$
が表す座標空間内の領域の体積は$\boxed{\ \ え\ \ }$である。
$\boxed{\ \ え\ \ }$の選択肢:
$(\textrm{a})\frac{3\pi}{2} (\textrm{b})3\pi (\textrm{c})\frac{3\pi^2}{2} (\textrm{d})3\pi^2$
$(\textrm{e})\pi\log 2 (\textrm{f})\frac{\pi\log 2}{2} (\textrm{g})3\pi^2\log 2$
2021上智大学理系過去問
福田の数学〜上智大学2021年TEAP利用理系第1問(2)〜n進法

単元:
#計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)nを20以上の整数とする。n進法で表したとき、$n^3$の位の数が$1,n^2$の位の数が2,
$n^1$の位の数が$3,n^0$の位の数が0である数$1230_{(n)}$を$n+1$進法で表すと$(n+1)^2$の位
の数は$\boxed{\ \ あ\ \ }$であり、$(n+1)^1$の位の数は$\boxed{\ \ い\ \ }$であり、$(n+1)^0$の位の数は$\boxed{\ \ う\ \ }$である。
$\boxed{\ \ あ\ \ }\ ~\ \boxed{\ \ う\ \ }$の選択肢:
$(\textrm{a})0 (\textrm{b})1 (\textrm{c})2 (\textrm{d})3$
$(\textrm{e})n-2 (\textrm{f})n-3 (\textrm{g})n-1 (\textrm{g})n$
2021上智大学理系過去問
この動画を見る
${\Large\boxed{1}}$(2)nを20以上の整数とする。n進法で表したとき、$n^3$の位の数が$1,n^2$の位の数が2,
$n^1$の位の数が$3,n^0$の位の数が0である数$1230_{(n)}$を$n+1$進法で表すと$(n+1)^2$の位
の数は$\boxed{\ \ あ\ \ }$であり、$(n+1)^1$の位の数は$\boxed{\ \ い\ \ }$であり、$(n+1)^0$の位の数は$\boxed{\ \ う\ \ }$である。
$\boxed{\ \ あ\ \ }\ ~\ \boxed{\ \ う\ \ }$の選択肢:
$(\textrm{a})0 (\textrm{b})1 (\textrm{c})2 (\textrm{d})3$
$(\textrm{e})n-2 (\textrm{f})n-3 (\textrm{g})n-1 (\textrm{g})n$
2021上智大学理系過去問
福田の数学〜上智大学2021年TEAP利用理系第1問(1)〜偽陽性偽陰性の条件付き確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
2021上智大学理系過去問
この動画を見る
${\Large\boxed{1}}$(1)ある病原菌の検査薬は、病原菌に感染しているのに誤って陰性と判断する
確率が20%、感染していないのに、誤って陽性と判断する確率が10%である。
全体の20%がこの病原菌に感染している集団から1つの検体を取り出して、
独立に2回、検査薬で検査する。こんとき、2回とも陰性であったが、実際には
感染している確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$であり、少なくとも1回は陽性であったが、
実際には病原菌には感染していない確率は$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
2021上智大学理系過去問
福田の数学〜上智大学2021年TEAP利用文系第4問(2)〜線形計画法

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は
$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$
である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{4}}$(2)野菜Aには1個あたり栄養素$x_1$が8g、栄養素$x_2$が4g、栄養素$x_3$が2g
含まれ、野菜Bには1個あたり栄養素$x_1$が4g、栄養素$x_2$が6g、栄養素$x_3$
が6g含まれている。これら2種類の野菜をそれぞれ何個かずつ選んで
ミックスし野菜ジュースを作る。選んだ野菜は丸ごと全て用い、栄養素$x_1$
を42g以上、栄養素$x_2$を48g以上、栄養素$x_3$を30g以上含まれるように
したい。野菜Aの個数と野菜Bの個数の和をなるべく小さくしてジュース
を作るとき、野菜Aの個数a、野菜Bの個数bの組(a,\ b)は
$(a,\ b)=(\boxed{\ \ ヘ\ \ },\ \boxed{\ \ ホ\ \ }), (\boxed{\ \ マ\ \ },\ \boxed{\ \ ミ\ \ })$
である。ただし、 $\boxed{\ \ ヘ\ \ } \lt \boxed{\ \ マ\ \ }$とする。
2021上智大学文系過去問
福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。
2021上智大学文系過去問
福田の数学〜上智大学2021年TEAP利用文系第3問〜反復試行の確率と3次関数の極大値

単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{3}}$硬貨を2枚投げる試行を3回繰り返して、1回目、2回目、3回目に出た表の枚数
を順に$\alpha,\beta,\gamma$とする。3次関数
$f(x)=(x-\alpha)(x-\beta)(x-\gamma)$
を考える。
(1)関数$y=f(x)$が極値をとらない確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(2)関数$y=f(x)$が極大値をとるとき、その極大値の取り得る値のうち最小のもの
は$\boxed{\ \ ニ\ \ }$で、最大のものは$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$である。
(3)関数$y=f(x)$が極大値$\boxed{\ \ ニ\ \ }$をとる確率は$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。
(4)関数$y=f(x)$が極大値$\frac{\boxed{\ \ ヌ\ \ }}{\boxed{\ \ ネ\ \ }}$を取る確率は$\frac{\boxed{\ \ ヒ\ \ }}{\boxed{\ \ フ\ \ }}$である。
2021上智大学文系過去問
福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$xy平面において、放物線$C:y=x^2$と、互いに直交するCの2つの接線l,mを
考える。
(1)lが点$(2,\ 4)$を通るとき、mの方程式は
$y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$
であり、lとmの交点の座標は
$(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})$
である。
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$である。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{2}}$xy平面において、放物線$C:y=x^2$と、互いに直交するCの2つの接線l,mを
考える。
(1)lが点$(2,\ 4)$を通るとき、mの方程式は
$y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$
であり、lとmの交点の座標は
$(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})$
である。
(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$である。
2021上智大学文系過去問
福田の数学〜上智大学2021年TEAP利用文系第1問(2)〜平面と直線の交点の位置ベクトル

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
$\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }$
である。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{1}}$(2)正四面体OABCの辺OAを1:2に内分する点をP、辺OBを3:2に内分する
点をQとする。三角形ABCの重心をGとする。3点P,Q,Gを含む平面が辺AC
と交わる点をRとする。このとき
$\overrightarrow{ OR }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\ \overrightarrow{ OA }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}\ \overrightarrow{ OC }$
である。
2021上智大学文系過去問
福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。
$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は
$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。
$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。
2021上智大学文系過去問
この動画を見る
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。
$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は
$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。
$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。
2021上智大学文系過去問
福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。
(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。
$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0 (\textrm{b})\frac{\pi}{6} (\textrm{c})\frac{\pi}{3} (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi (\textrm{f})\frac{5}{6}\pi (\textrm{g})\pi $
(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。
2021上智大学理工学部過去問
この動画を見る
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。
(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。
$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0 (\textrm{b})\frac{\pi}{6} (\textrm{c})\frac{\pi}{3} (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi (\textrm{f})\frac{5}{6}\pi (\textrm{g})\pi $
(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。
(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。
2021上智大学理工学部過去問
福田の数学〜上智大学2021年理工学部第3問〜複素数平面と図形

単元:
#大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ $i$を虚数単位とする。複素数zの絶対値を$|z|$と表す。
$w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とし、$\alpha=w+w^4$ とする。
(1)$\alpha^2=\boxed{\ \ お\ \ }$である。これより、$\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$である。
(2)複素数平面上の2点$\frac{i}{2}$,-1間の距離は$\boxed{\ \ か\ \ }$である。
(3)複素数平面上の2点$w^2,$ -1間の距離は$\boxed{\ \ き\ \ }$である。
(4)$\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta)$ (ただし、$r \gt 0,\ 0 \leqq \theta \lt 2\pi$)
とおくとき、$r=\boxed{\ \ く\ \ }$であり、$\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi$である。
(5)複素数平面上で、-1を中心都市$w^2$を通る円上をzが動くとする。
$x=\frac{1}{z}$とするとき、$x$は$|1+x|=\boxed{\ \ け\ \ }|x|$を満たし、$\boxed{\ \ こ\ \ }$を
中心とする半径$\boxed{\ \ さ\ \ }$の円を描く。
$\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }$の選択肢
$(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha$
$(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1$
$(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1$
$(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}$
2021上智大学理工学部過去問
この動画を見る
${\Large\boxed{3}}$ $i$を虚数単位とする。複素数zの絶対値を$|z|$と表す。
$w=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$ とし、$\alpha=w+w^4$ とする。
(1)$\alpha^2=\boxed{\ \ お\ \ }$である。これより、$\alpha=\frac{\boxed{\ \ ソ\ \ }+\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }}$である。
(2)複素数平面上の2点$\frac{i}{2}$,-1間の距離は$\boxed{\ \ か\ \ }$である。
(3)複素数平面上の2点$w^2,$ -1間の距離は$\boxed{\ \ き\ \ }$である。
(4)$\frac{w^2+1}{w+1}=r(\cos\theta+i\sin\theta)$ (ただし、$r \gt 0,\ 0 \leqq \theta \lt 2\pi$)
とおくとき、$r=\boxed{\ \ く\ \ }$であり、$\theta=\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}\pi$である。
(5)複素数平面上で、-1を中心都市$w^2$を通る円上をzが動くとする。
$x=\frac{1}{z}$とするとき、$x$は$|1+x|=\boxed{\ \ け\ \ }|x|$を満たし、$\boxed{\ \ こ\ \ }$を
中心とする半径$\boxed{\ \ さ\ \ }$の円を描く。
$\boxed{\ \ お\ \ }~\ \boxed{\ \ さ\ \ }$の選択肢
$(\textrm{a})1 (\textrm{b})2 (\textrm{c})\alpha (\textrm{d})2\alpha$
$(\textrm{e})\frac{\alpha}{2}+1 (\textrm{f})\frac{\alpha}{2}-1 (\textrm{g})-\frac{\alpha}{2}+1 (\textrm{h})-\frac{\alpha}{2}-1$
$(\textrm{i})\alpha+1 (\textrm{j})\alpha-1 (\textrm{k})-\alpha+1 (\textrm{l})-\alpha-1$
$(\textrm{m})\alpha+\frac{1}{2} (\textrm{n})\alpha-\frac{1}{2} (\textrm{o})-\alpha+\frac{1}{2} (\textrm{p})-\alpha-\frac{1}{2}$
2021上智大学理工学部過去問
福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x} (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$
$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1 (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ $\\(\textrm{b})$成り立つような実数Kが存在する
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。
2021上智大学理工学部過去問
この動画を見る
${\Large\boxed{2}}$(1)実数全体で定義され、実数の値をとる関数$f(x)$に対する次の条件$p$を考える。
$p:「K以上の全ての実数xに対してf(x) \geqq 1」$が成り立つような実数Kが存在する。
$(\textrm{i})$次に挙げた関数$(\textrm{a})~(\textrm{d})$のそれぞれについて、pを満たすならばo、pを
満たさないならばxをマークせよ。
$(\textrm{a})f(x)=xe^{-x} (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x$
$(\textrm{ii})$次の条件がpの否定になるように、$\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }$のそれぞれの選択肢から、
あてはまるものを選べ。
・$「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }$実数に対して$\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }$
$\boxed{\ \ あ\ \ }$の選択肢$:(\textrm{a})K$以上の $(\textrm{b})K$未満の
$\boxed{\ \ い\ \ }$の選択肢:$(\textrm{a})$すべての $(\textrm{b})$ある
$\boxed{\ \ う\ \ }$の選択肢$:(\textrm{a})f(x) \geqq 1 (\textrm{b})f(x) \lt 1$
$\boxed{\ \ え\ \ }$の選択肢$:(\textrm{a})$どんな実数Kについても成り立つ $\\(\textrm{b})$成り立つような実数Kが存在する
$(\textrm{iii})$関数$f(x)$に対して、$g(x)=2f(x)$で関数$g(x)$を定める。次に挙げた命題$(\textrm{A})~(\textrm{D})$
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。
$(\textrm{A})f(x)$が$p$を満たすならば、$g(x)$も$p$を満たす。
$(\textrm{B})g(x)$が$p$を満たすならば、$f(x)$もpを満たす。
$(\textrm{C})f(x)$が$p$を満たさないならば、$g(x)$もpを満たさない。
$(\textrm{D})f(x)$がpを満たさないならば、$g(x)$も$p$を満たす。
2021上智大学理工学部過去問
福田の数学〜上智大学2021年理工学部第2問(2)〜常用対数の評価

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}} (2)(\textrm{i})$不等式
$\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}$
を満たす自然数$k$は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})7^{35}$は$\boxed{\ \ セ\ \ }$桁の整数である。
2021上智大学理工学部過去問
この動画を見る
${\Large\boxed{2}} (2)(\textrm{i})$不等式
$\frac{k-1}{k} \lt \log_{10}7 \lt \frac{k}{k+1}$
を満たす自然数$k$は$\boxed{\ \ ス\ \ }$である。
$(\textrm{ii})7^{35}$は$\boxed{\ \ セ\ \ }$桁の整数である。
2021上智大学理工学部過去問
福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 媒介変数表示
$x=\frac{2}{\cos\theta}, y=3\tan\theta+1$
で表される図形Cを考える。
(1)Cは頂点$(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })$、焦点$(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })$、
漸近線$y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }$をもつ双曲線である。
(2)双曲線Cと直線$x=4$は、2点$(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})$
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
この動画を見る
${\Large\boxed{1}}$ 媒介変数表示
$x=\frac{2}{\cos\theta}, y=3\tan\theta+1$
で表される図形Cを考える。
(1)Cは頂点$(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })$、焦点$(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })$、
漸近線$y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }$をもつ双曲線である。
(2)双曲線Cと直線$x=4$は、2点$(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})$
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}
2021上智大学理工学部過去問
上智大 関数の最大最小

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$
$(a,b)$の値を求めよ
出典:2005年上智大学 過去問
この動画を見る
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$
$(a,b)$の値を求めよ
出典:2005年上智大学 過去問
指定校推薦で上智大学に合格したAくんのインタビュー!【篠原好】

上智大 熊本大 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#上智大学#熊本大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$x^{1000}$を$x^3+x^2+x+1$で割った余りと商の$x^{100}$の係数を求めよ。
熊本大学過去問題
$x^4+x^3+x^2+x+1$を実数係数のxの2次式の積で
この動画を見る
上智大学過去問題
$x^{1000}$を$x^3+x^2+x+1$で割った余りと商の$x^{100}$の係数を求めよ。
熊本大学過去問題
$x^4+x^3+x^2+x+1$を実数係数のxの2次式の積で
上智/京大 3次方程式/整式の除法 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#上智大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$α = \{ (\frac{413}{8})^{\frac{1}{2}} +6 \} ^{\frac{1}{3}} - $ $ \{ (\frac{413}{8})^{\frac{1}{2}} -6 \} ^{\frac{1}{3}} $
αを解とする整数係数の3次方程式を求めよ。
京都大学過去問題
$(x^{100}+1)^{100}+(x^2+1)^{100}+1$は$x^2+x+1$で割り切れるか。
この動画を見る
上智大学過去問題
$α = \{ (\frac{413}{8})^{\frac{1}{2}} +6 \} ^{\frac{1}{3}} - $ $ \{ (\frac{413}{8})^{\frac{1}{2}} -6 \} ^{\frac{1}{3}} $
αを解とする整数係数の3次方程式を求めよ。
京都大学過去問題
$(x^{100}+1)^{100}+(x^2+1)^{100}+1$は$x^2+x+1$で割り切れるか。
