上智大学 - 質問解決D.B.(データベース) - Page 3

上智大学

上智大 関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$

$(a,b)$の値を求めよ

出典:2005年上智大学 過去問
この動画を見る 

上智大 熊本大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#上智大学#熊本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$x^{1000}$を$x^3+x^2+x+1$で割った余りと商の$x^{100}$の係数を求めよ。

熊本大学過去問題
$x^4+x^3+x^2+x+1$を実数係数のxの2次式の積で
この動画を見る 

上智/京大 3次方程式/整式の除法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#上智大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
上智大学過去問題
$α = \{ (\frac{413}{8})^{\frac{1}{2}} +6 \} ^{\frac{1}{3}} - $ $ \{ (\frac{413}{8})^{\frac{1}{2}} -6 \} ^{\frac{1}{3}} $
αを解とする整数係数の3次方程式を求めよ。

京都大学過去問題
$(x^{100}+1)^{100}+(x^2+1)^{100}+1$は$x^2+x+1$で割り切れるか。
この動画を見る 
PAGE TOP